Files
b2txt25/language_model/wenet/transformer/embedding.py
2025-07-02 12:18:09 -07:00

132 lines
4.5 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
# Author: di.wu@mobvoi.com (DI WU)
"""Positonal Encoding Module."""
import math
from typing import Tuple
import torch
class PositionalEncoding(torch.nn.Module):
"""Positional encoding.
:param int d_model: embedding dim
:param float dropout_rate: dropout rate
:param int max_len: maximum input length
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
"""
def __init__(self,
d_model: int,
dropout_rate: float,
max_len: int = 5000,
reverse: bool = False):
"""Construct an PositionalEncoding object."""
super().__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.max_len = max_len
self.pe = torch.zeros(self.max_len, self.d_model)
position = torch.arange(0, self.max_len,
dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32) *
-(math.log(10000.0) / self.d_model))
self.pe[:, 0::2] = torch.sin(position * div_term)
self.pe[:, 1::2] = torch.cos(position * div_term)
self.pe = self.pe.unsqueeze(0)
def forward(self,
x: torch.Tensor,
offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
"""Add positional encoding.
Args:
x (torch.Tensor): Input. Its shape is (batch, time, ...)
offset (int): position offset
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
torch.Tensor: for compatibility to RelPositionalEncoding
"""
assert offset + x.size(1) < self.max_len
self.pe = self.pe.to(x.device)
pos_emb = self.pe[:, offset:offset + x.size(1)]
x = x * self.xscale + pos_emb
return self.dropout(x), self.dropout(pos_emb)
def position_encoding(self, offset: int, size: int) -> torch.Tensor:
""" For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int): start offset
size (int): requried size of position encoding
Returns:
torch.Tensor: Corresponding encoding
"""
assert offset + size < self.max_len
return self.dropout(self.pe[:, offset:offset + size])
class RelPositionalEncoding(PositionalEncoding):
"""Relative positional encoding module.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
"""Initialize class."""
super().__init__(d_model, dropout_rate, max_len, reverse=True)
def forward(self,
x: torch.Tensor,
offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Positional embedding tensor (1, time, `*`).
"""
assert offset + x.size(1) < self.max_len
self.pe = self.pe.to(x.device)
x = x * self.xscale
pos_emb = self.pe[:, offset:offset + x.size(1)]
return self.dropout(x), self.dropout(pos_emb)
class NoPositionalEncoding(torch.nn.Module):
""" No position encoding
"""
def __init__(self, d_model: int, dropout_rate: float):
super().__init__()
self.d_model = d_model
self.dropout = torch.nn.Dropout(p=dropout_rate)
def forward(self,
x: torch.Tensor,
offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
""" Just return zero vector for interface compatibility
"""
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
return self.dropout(x), pos_emb
def position_encoding(self, offset: int, size: int) -> torch.Tensor:
return torch.zeros(1, size, self.d_model)