Files
b2txt25/language_model/wenet/bin/train.py
2025-07-02 12:18:09 -07:00

260 lines
10 KiB
Python

# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Xiaoyu Chen)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import copy
import logging
import os
import torch
import torch.distributed as dist
import torch.optim as optim
import yaml
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from wenet.dataset.dataset import AudioDataset, CollateFunc
from wenet.transformer.asr_model import init_asr_model
from wenet.utils.checkpoint import load_checkpoint, save_checkpoint
from wenet.utils.executor import Executor
from wenet.utils.scheduler import WarmupLR
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='training your network')
parser.add_argument('--config', required=True, help='config file')
parser.add_argument('--train_data', required=True, help='train data file')
parser.add_argument('--cv_data', required=True, help='cv data file')
parser.add_argument('--gpu',
type=int,
default=-1,
help='gpu id for this local rank, -1 for cpu')
parser.add_argument('--model_dir', required=True, help='save model dir')
parser.add_argument('--checkpoint', help='checkpoint model')
parser.add_argument('--tensorboard_dir',
default='tensorboard',
help='tensorboard log dir')
parser.add_argument('--ddp.rank',
dest='rank',
default=0,
type=int,
help='global rank for distributed training')
parser.add_argument('--ddp.world_size',
dest='world_size',
default=-1,
type=int,
help='''number of total processes/gpus for
distributed training''')
parser.add_argument('--ddp.dist_backend',
dest='dist_backend',
default='nccl',
choices=['nccl', 'gloo'],
help='distributed backend')
parser.add_argument('--ddp.init_method',
dest='init_method',
default=None,
help='ddp init method')
parser.add_argument('--num_workers',
default=0,
type=int,
help='num of subprocess workers for reading')
parser.add_argument('--pin_memory',
action='store_true',
default=False,
help='Use pinned memory buffers used for reading')
parser.add_argument('--use_amp',
action='store_true',
default=False,
help='Use automatic mixed precision training')
parser.add_argument('--cmvn', default=None, help='global cmvn file')
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
# Set random seed
torch.manual_seed(777)
print(args)
with open(args.config, 'r') as fin:
configs = yaml.load(fin, Loader=yaml.FullLoader)
distributed = args.world_size > 1
raw_wav = configs['raw_wav']
train_collate_func = CollateFunc(**configs['collate_conf'],
raw_wav=raw_wav)
cv_collate_conf = copy.deepcopy(configs['collate_conf'])
# no augmenation on cv set
cv_collate_conf['spec_aug'] = False
cv_collate_conf['spec_sub'] = False
if raw_wav:
cv_collate_conf['feature_dither'] = 0.0
cv_collate_conf['speed_perturb'] = False
cv_collate_conf['wav_distortion_conf']['wav_distortion_rate'] = 0
cv_collate_func = CollateFunc(**cv_collate_conf, raw_wav=raw_wav)
dataset_conf = configs.get('dataset_conf', {})
train_dataset = AudioDataset(args.train_data,
**dataset_conf,
raw_wav=raw_wav)
cv_dataset = AudioDataset(args.cv_data, **dataset_conf, raw_wav=raw_wav)
if distributed:
logging.info('training on multiple gpus, this gpu {}'.format(args.gpu))
dist.init_process_group(args.dist_backend,
init_method=args.init_method,
world_size=args.world_size,
rank=args.rank)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, shuffle=True)
cv_sampler = torch.utils.data.distributed.DistributedSampler(
cv_dataset, shuffle=False)
else:
train_sampler = None
cv_sampler = None
train_data_loader = DataLoader(train_dataset,
collate_fn=train_collate_func,
sampler=train_sampler,
shuffle=(train_sampler is None),
pin_memory=args.pin_memory,
batch_size=1,
num_workers=args.num_workers)
cv_data_loader = DataLoader(cv_dataset,
collate_fn=cv_collate_func,
sampler=cv_sampler,
shuffle=False,
batch_size=1,
pin_memory=args.pin_memory,
num_workers=args.num_workers)
if raw_wav:
input_dim = configs['collate_conf']['feature_extraction_conf'][
'mel_bins']
else:
input_dim = train_dataset.input_dim
vocab_size = train_dataset.output_dim
# Save configs to model_dir/train.yaml for inference and export
configs['input_dim'] = input_dim
configs['output_dim'] = vocab_size
configs['cmvn_file'] = args.cmvn
configs['is_json_cmvn'] = raw_wav
if args.rank == 0:
saved_config_path = os.path.join(args.model_dir, 'train.yaml')
with open(saved_config_path, 'w') as fout:
data = yaml.dump(configs)
fout.write(data)
# Init asr model from configs
model = init_asr_model(configs)
print(model)
num_params = sum(p.numel() for p in model.parameters())
print('the number of model params: {}'.format(num_params))
# !!!IMPORTANT!!!
# Try to export the model by script, if fails, we should refine
# the code to satisfy the script export requirements
if args.rank == 0:
script_model = torch.jit.script(model)
script_model.save(os.path.join(args.model_dir, 'init.zip'))
executor = Executor()
# If specify checkpoint, load some info from checkpoint
if args.checkpoint is not None:
infos = load_checkpoint(model, args.checkpoint)
else:
infos = {}
start_epoch = infos.get('epoch', -1) + 1
cv_loss = infos.get('cv_loss', 0.0)
step = infos.get('step', -1)
num_epochs = configs.get('max_epoch', 100)
model_dir = args.model_dir
writer = None
if args.rank == 0:
os.makedirs(model_dir, exist_ok=True)
exp_id = os.path.basename(model_dir)
writer = SummaryWriter(os.path.join(args.tensorboard_dir, exp_id))
if distributed:
assert (torch.cuda.is_available())
# cuda model is required for nn.parallel.DistributedDataParallel
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(
model, find_unused_parameters=True)
device = torch.device("cuda")
else:
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
model = model.to(device)
optimizer = optim.Adam(model.parameters(), **configs['optim_conf'])
scheduler = WarmupLR(optimizer, **configs['scheduler_conf'])
final_epoch = None
configs['rank'] = args.rank
configs['is_distributed'] = distributed
configs['use_amp'] = args.use_amp
if start_epoch == 0 and args.rank == 0:
save_model_path = os.path.join(model_dir, 'init.pt')
save_checkpoint(model, save_model_path)
# Start training loop
executor.step = step
scheduler.set_step(step)
# used for pytorch amp mixed precision training
scaler = None
if args.use_amp:
scaler = torch.cuda.amp.GradScaler()
for epoch in range(start_epoch, num_epochs):
if distributed:
train_sampler.set_epoch(epoch)
lr = optimizer.param_groups[0]['lr']
logging.info('Epoch {} TRAIN info lr {}'.format(epoch, lr))
executor.train(model, optimizer, scheduler, train_data_loader, device,
writer, configs, scaler)
total_loss, num_seen_utts = executor.cv(model, cv_data_loader, device,
configs)
if args.world_size > 1:
# all_reduce expected a sequence parameter, so we use [num_seen_utts].
num_seen_utts = torch.Tensor([num_seen_utts]).to(device)
# the default operator in all_reduce function is sum.
dist.all_reduce(num_seen_utts)
total_loss = torch.Tensor([total_loss]).to(device)
dist.all_reduce(total_loss)
cv_loss = total_loss[0] / num_seen_utts[0]
cv_loss = cv_loss.item()
else:
cv_loss = total_loss / num_seen_utts
logging.info('Epoch {} CV info cv_loss {}'.format(epoch, cv_loss))
if args.rank == 0:
save_model_path = os.path.join(model_dir, '{}.pt'.format(epoch))
save_checkpoint(
model, save_model_path, {
'epoch': epoch,
'lr': lr,
'cv_loss': cv_loss,
'step': executor.step
})
writer.add_scalars('epoch', {'cv_loss': cv_loss, 'lr': lr}, epoch)
final_epoch = epoch
if final_epoch is not None and args.rank == 0:
final_model_path = os.path.join(model_dir, 'final.pt')
os.symlink('{}.pt'.format(final_epoch), final_model_path)