Files
b2txt25/language_model/tools/compute_fbank_feats.py
2025-07-02 12:18:09 -07:00

129 lines
4.7 KiB
Python

# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Chao Yang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import wenet.dataset.kaldi_io as kaldi_io
# The "sox" backends are deprecated and will be removed in 0.9.0 release.
# So here we use sox_io backend
torchaudio.set_audio_backend("sox_io")
def parse_opts():
parser = argparse.ArgumentParser(description='training your network')
parser.add_argument('--num_mel_bins',
default=80,
type=int,
help='Number of triangular mel-frequency bins')
parser.add_argument('--frame_length',
type=int,
default=25,
help='Frame length in milliseconds')
parser.add_argument('--frame_shift',
type=int,
default=10,
help='Frame shift in milliseconds')
parser.add_argument('--dither',
type=int,
default=0.0,
help='Dithering constant (0.0 means no dither)')
parser.add_argument('--segments', default=None, help='segments file')
parser.add_argument('wav_scp', help='wav scp file')
parser.add_argument('out_ark', help='output ark file')
parser.add_argument('out_scp', help='output scp file')
args = parser.parse_args()
return args
# wav format: <key> <wav_path>
def load_wav_scp(wav_scp_file):
wav_list = []
with open(wav_scp_file, 'r', encoding='utf8') as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 2
wav_list.append((arr[0], arr[1]))
return wav_list
# wav format: <key> <wav_path>
def load_wav_scp_dict(wav_scp_file):
wav_dict = {}
with open(wav_scp_file, 'r', encoding='utf8') as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 2
wav_dict[arr[0]] = arr[1]
return wav_dict
# Segments format: <key> <wav_key> <start> <end>
def load_wav_segments(wav_scp_file, segments_file):
wav_dict = load_wav_scp_dict(wav_scp_file)
audio_list = []
with open(segments_file, 'r', encoding='utf8') as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 4
key = arr[0]
wav_file = wav_dict[arr[1]]
start = float(arr[2])
end = float(arr[3])
audio_list.append((key, wav_file, start, end))
return audio_list
if __name__ == '__main__':
args = parse_opts()
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
if args.segments is None:
audio_list = load_wav_scp(args.wav_scp)
else:
audio_list = load_wav_segments(args.wav_scp, args.segments)
count = 0
with open(args.out_ark, 'wb') as ark_fout, \
open(args.out_scp, 'w', encoding='utf8') as scp_fout:
for item in audio_list:
if len(item) == 2:
key, wav_path = item
waveform, sample_rate = torchaudio.load_wav(wav_path)
else:
assert len(item) == 4
key, wav_path, start, end = item
sample_rate = torchaudio.info(wav_path).sample_rate
frame_offset = int(start * sample_rate)
num_frames = int((end - start) * sample_rate)
waveform, sample_rate = torchaudio.load_wav(
wav_path, frame_offset, num_frames)
mat = kaldi.fbank(waveform,
num_mel_bins=args.num_mel_bins,
frame_length=args.frame_length,
frame_shift=args.frame_shift,
dither=args.dither,
energy_floor=0.0,
sample_frequency=sample_rate)
mat = mat.detach().numpy()
kaldi_io.write_ark_scp(key, mat, ark_fout, scp_fout)
count += 1
if count % 10000 == 0:
logging.info('Progress {}/{}'.format(count, len(audio_list)))