159 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # 增强 lm_decoder Python 绑定以支持时间戳提取
 | ||
| 
 | ||
| ## 问题
 | ||
| 当前 `lm_decoder` Python 绑定只暴露了句子和分数,没有暴露:
 | ||
| - Token 序列(inputs/outputs)
 | ||
| - 时间戳信息(times)
 | ||
| - 详细的似然度信息
 | ||
| 
 | ||
| ## 解决方案
 | ||
| 
 | ||
| ### 步骤 1: 修改 brain_speech_decoder.h
 | ||
| 
 | ||
| 在 `BrainSpeechDecoder` 类中添加公有访问方法:
 | ||
| 
 | ||
| ```cpp
 | ||
| // 在 class BrainSpeechDecoder 的 public 部分添加
 | ||
| 
 | ||
| const std::vector<std::vector<int>>& GetInputs() const {
 | ||
|     if (searcher_ == nullptr) {
 | ||
|         static std::vector<std::vector<int>> empty;
 | ||
|         return empty;
 | ||
|     }
 | ||
|     return searcher_->Inputs();
 | ||
| }
 | ||
| 
 | ||
| const std::vector<std::vector<int>>& GetOutputs() const {
 | ||
|     if (searcher_ == nullptr) {
 | ||
|         static std::vector<std::vector<int>> empty;
 | ||
|         return empty;
 | ||
|     }
 | ||
|     return searcher_->Outputs();
 | ||
| }
 | ||
| 
 | ||
| const std::vector<std::vector<int>>& GetTimes() const {
 | ||
|     if (searcher_ == nullptr) {
 | ||
|         static std::vector<std::vector<int>> empty;
 | ||
|         return empty;
 | ||
|     }
 | ||
|     return searcher_->Times();
 | ||
| }
 | ||
| 
 | ||
| const std::vector<std::pair<float, float>>& GetLikelihood() const {
 | ||
|     if (searcher_ == nullptr) {
 | ||
|         static std::vector<std::pair<float, float>> empty;
 | ||
|         return empty;
 | ||
|     }
 | ||
|     return searcher_->Likelihood();
 | ||
| }
 | ||
| ```
 | ||
| 
 | ||
| ### 步骤 2: 修改 lm_decoder.cc Python 绑定
 | ||
| 
 | ||
| 在 `PYBIND11_MODULE` 中添加新的方法绑定:
 | ||
| 
 | ||
| ```cpp
 | ||
| py::class_<BrainSpeechDecoder>(m, "BrainSpeechDecoder")
 | ||
|     .def(py::init<std::shared_ptr<DecodeResource>, std::shared_ptr<DecodeOptions> >())
 | ||
|     .def("SetOpt", &BrainSpeechDecoder::SetOpt)
 | ||
|     .def("Decode", &BrainSpeechDecoder::Decode)
 | ||
|     .def("Rescore", &BrainSpeechDecoder::Rescore)
 | ||
|     .def("Reset", &BrainSpeechDecoder::Reset)
 | ||
|     .def("FinishDecoding", &BrainSpeechDecoder::FinishDecoding)
 | ||
|     .def("DecodedSomething", &BrainSpeechDecoder::DecodedSomething)
 | ||
|     .def("result", &BrainSpeechDecoder::result)
 | ||
|     // 新增方法
 | ||
|     .def("get_inputs", &BrainSpeechDecoder::GetInputs,
 | ||
|          "Get input token sequences for N-best hypotheses")
 | ||
|     .def("get_outputs", &BrainSpeechDecoder::GetOutputs,
 | ||
|          "Get output token sequences for N-best hypotheses")
 | ||
|     .def("get_times", &BrainSpeechDecoder::GetTimes,
 | ||
|          "Get timestamps for each token in N-best hypotheses")
 | ||
|     .def("get_likelihood", &BrainSpeechDecoder::GetLikelihood,
 | ||
|          "Get (acoustic_score, lm_score) pairs for N-best hypotheses");
 | ||
| ```
 | ||
| 
 | ||
| ### 步骤 3: 重新编译
 | ||
| 
 | ||
| ```bash
 | ||
| cd language_model/runtime/server/x86
 | ||
| mkdir -p build && cd build
 | ||
| cmake ..
 | ||
| make -j$(nproc)
 | ||
| ```
 | ||
| 
 | ||
| ### 步骤 4: 使用增强接口
 | ||
| 
 | ||
| 修改 `language-model-standalone.py`:
 | ||
| 
 | ||
| ```python
 | ||
| # 在 Finalize 阶段获取详细信息
 | ||
| if nbest > 1:
 | ||
|     # 获取基本结果
 | ||
|     nbest_out = []
 | ||
|     for d in ngramDecoder.result():
 | ||
|         nbest_out.append([d.sentence, d.ac_score, d.lm_score])
 | ||
|     
 | ||
|     # 获取时间戳和token序列(新增)
 | ||
|     try:
 | ||
|         inputs = ngramDecoder.get_inputs()      # List[List[int]]
 | ||
|         outputs = ngramDecoder.get_outputs()    # List[List[int]]
 | ||
|         times = ngramDecoder.get_times()        # List[List[int]]
 | ||
|         
 | ||
|         # 为每个候选添加详细信息
 | ||
|         for i, (inp, out, time_seq) in enumerate(zip(inputs, outputs, times)):
 | ||
|             logging.info(f"Candidate {i}:")
 | ||
|             logging.info(f"  Sentence: {nbest_out[i][0]}")
 | ||
|             logging.info(f"  Token IDs: {out}")
 | ||
|             logging.info(f"  Timestamps (frames): {time_seq}")
 | ||
|             
 | ||
|             # 转换为可读格式(需要词表)
 | ||
|             if symbol_table is not None:
 | ||
|                 tokens = [symbol_table[tid] for tid in out]
 | ||
|                 logging.info(f"  Tokens: {tokens}")
 | ||
|                 
 | ||
|                 # 生成详细的时间对齐
 | ||
|                 for token, start_frame in zip(tokens, time_seq):
 | ||
|                     time_ms = start_frame * 10  # 假设每帧10ms
 | ||
|                     logging.info(f"    {token} @ {time_ms}ms (frame {start_frame})")
 | ||
|     
 | ||
|     except AttributeError:
 | ||
|         logging.warning("Enhanced decoder methods not available. Please recompile with updated bindings.")
 | ||
| ```
 | ||
| 
 | ||
| ## 示例输出
 | ||
| 
 | ||
| 使用增强接口后,你可以获得:
 | ||
| 
 | ||
| ```
 | ||
| Candidate 0:
 | ||
|   Sentence: hello world
 | ||
|   Token IDs: [15, 8, 12, 12, 15, 0, 23, 15, 18, 12, 4]
 | ||
|   Timestamps (frames): [5, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66]
 | ||
|   Tokens: ['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
 | ||
|     h @ 50ms (frame 5)
 | ||
|     e @ 120ms (frame 12)
 | ||
|     l @ 180ms (frame 18)
 | ||
|     l @ 240ms (frame 24)
 | ||
|     o @ 300ms (frame 30)
 | ||
|       @ 360ms (frame 36)
 | ||
|     w @ 420ms (frame 42)
 | ||
|     o @ 480ms (frame 48)
 | ||
|     r @ 540ms (frame 54)
 | ||
|     l @ 600ms (frame 60)
 | ||
|     d @ 660ms (frame 66)
 | ||
| ```
 | ||
| 
 | ||
| ## 注意事项
 | ||
| 
 | ||
| 1. **Token vs 音素**:这个系统使用的是字符级别(character-level)的建模,不是音素
 | ||
| 2. **时间戳精度**:时间戳是帧级别的,需要乘以帧长(通常10ms)转换为时间
 | ||
| 3. **CTC 特性**:由于 blank frame skipping,时间戳可能不连续
 | ||
| 4. **N-best**:每个候选都有独立的时间戳序列
 | ||
| 
 | ||
| ## 参考
 | ||
| 
 | ||
| - C++ 接口:`runtime/core/decoder/search_interface.h`
 | ||
| - WFST 解码实现:`runtime/core/decoder/ctc_wfst_beam_search.cc`
 | ||
| - 时间戳生成:`ConvertToInputs()` 方法中的 `decoded_frames_mapping_`
 | 
