Files
b2txt25/language_model/wenet/bin/average_model.py
2025-07-02 12:18:09 -07:00

79 lines
2.9 KiB
Python

# Copyright 2019 Mobvoi Inc. All Rights Reserved.
# Author: di.wu@mobvoi.com (DI WU)
import os
import argparse
import glob
import yaml
import numpy as np
import torch
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='average model')
parser.add_argument('--dst_model', required=True, help='averaged model')
parser.add_argument('--src_path',
required=True,
help='src model path for average')
parser.add_argument('--val_best',
action="store_true",
help='averaged model')
parser.add_argument('--num',
default=5,
type=int,
help='nums for averaged model')
parser.add_argument('--min_epoch',
default=0,
type=int,
help='min epoch used for averaging model')
parser.add_argument('--max_epoch',
default=65536, # Big enough
type=int,
help='max epoch used for averaging model')
args = parser.parse_args()
print(args)
checkpoints = []
val_scores = []
if args.val_best:
yamls = glob.glob('{}/[!train]*.yaml'.format(args.src_path))
for y in yamls:
with open(y, 'r') as f:
dic_yaml = yaml.load(f, Loader=yaml.FullLoader)
loss = dic_yaml['cv_loss']
epoch = dic_yaml['epoch']
if epoch >= args.min_epoch and epoch <= args.max_epoch:
val_scores += [[epoch, loss]]
val_scores = np.array(val_scores)
sort_idx = np.argsort(val_scores[:, -1])
sorted_val_scores = val_scores[sort_idx][::1]
print("best val scores = " + str(sorted_val_scores[:args.num, 1]))
print("selected epochs = " +
str(sorted_val_scores[:args.num, 0].astype(np.int64)))
path_list = [
args.src_path + '/{}.pt'.format(int(epoch))
for epoch in sorted_val_scores[:args.num, 0]
]
else:
path_list = glob.glob('{}/[!avg][!final]*.pt'.format(args.src_path))
path_list = sorted(path_list, key=os.path.getmtime)
path_list = path_list[-args.num:]
print(path_list)
avg = None
num = args.num
assert num == len(path_list)
for path in path_list:
print('Processing {}'.format(path))
states = torch.load(path, map_location=torch.device('cpu'))
if avg is None:
avg = states
else:
for k in avg.keys():
avg[k] += states[k]
# average
for k in avg.keys():
if avg[k] is not None:
# pytorch 1.6 use true_divide instead of /=
avg[k] = torch.true_divide(avg[k], num)
print('Saving to {}'.format(args.dst_model))
torch.save(avg, args.dst_model)