79 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright 2019 Mobvoi Inc. All Rights Reserved.
 | |
| # Author: di.wu@mobvoi.com (DI WU)
 | |
| import os
 | |
| import argparse
 | |
| import glob
 | |
| 
 | |
| import yaml
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     parser = argparse.ArgumentParser(description='average model')
 | |
|     parser.add_argument('--dst_model', required=True, help='averaged model')
 | |
|     parser.add_argument('--src_path',
 | |
|                         required=True,
 | |
|                         help='src model path for average')
 | |
|     parser.add_argument('--val_best',
 | |
|                         action="store_true",
 | |
|                         help='averaged model')
 | |
|     parser.add_argument('--num',
 | |
|                         default=5,
 | |
|                         type=int,
 | |
|                         help='nums for averaged model')
 | |
|     parser.add_argument('--min_epoch',
 | |
|                         default=0,
 | |
|                         type=int,
 | |
|                         help='min epoch used for averaging model')
 | |
|     parser.add_argument('--max_epoch',
 | |
|                         default=65536,  # Big enough
 | |
|                         type=int,
 | |
|                         help='max epoch used for averaging model')
 | |
| 
 | |
|     args = parser.parse_args()
 | |
|     print(args)
 | |
|     checkpoints = []
 | |
|     val_scores = []
 | |
|     if args.val_best:
 | |
|         yamls = glob.glob('{}/[!train]*.yaml'.format(args.src_path))
 | |
|         for y in yamls:
 | |
|             with open(y, 'r') as f:
 | |
|                 dic_yaml = yaml.load(f, Loader=yaml.FullLoader)
 | |
|                 loss = dic_yaml['cv_loss']
 | |
|                 epoch = dic_yaml['epoch']
 | |
|                 if epoch >= args.min_epoch and epoch <= args.max_epoch:
 | |
|                     val_scores += [[epoch, loss]]
 | |
|         val_scores = np.array(val_scores)
 | |
|         sort_idx = np.argsort(val_scores[:, -1])
 | |
|         sorted_val_scores = val_scores[sort_idx][::1]
 | |
|         print("best val scores = " + str(sorted_val_scores[:args.num, 1]))
 | |
|         print("selected epochs = " +
 | |
|               str(sorted_val_scores[:args.num, 0].astype(np.int64)))
 | |
|         path_list = [
 | |
|             args.src_path + '/{}.pt'.format(int(epoch))
 | |
|             for epoch in sorted_val_scores[:args.num, 0]
 | |
|         ]
 | |
|     else:
 | |
|         path_list = glob.glob('{}/[!avg][!final]*.pt'.format(args.src_path))
 | |
|         path_list = sorted(path_list, key=os.path.getmtime)
 | |
|         path_list = path_list[-args.num:]
 | |
|     print(path_list)
 | |
|     avg = None
 | |
|     num = args.num
 | |
|     assert num == len(path_list)
 | |
|     for path in path_list:
 | |
|         print('Processing {}'.format(path))
 | |
|         states = torch.load(path, map_location=torch.device('cpu'))
 | |
|         if avg is None:
 | |
|             avg = states
 | |
|         else:
 | |
|             for k in avg.keys():
 | |
|                 avg[k] += states[k]
 | |
|     # average
 | |
|     for k in avg.keys():
 | |
|         if avg[k] is not None:
 | |
|             # pytorch 1.6 use true_divide instead of /=
 | |
|             avg[k] = torch.true_divide(avg[k], num)
 | |
|     print('Saving to {}'.format(args.dst_model))
 | |
|     torch.save(avg, args.dst_model)
 | 
