4.9 KiB
CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
Project Overview
This repository contains the code and data for "An Accurate and Rapidly Calibrating Speech Neuroprosthesis" published in the New England Journal of Medicine (2024). It implements a brain-to-text system that converts neural signals from speech motor cortex into text using RNN models and n-gram language models.
Development Environment Setup
Main Environment (b2txt25)
./setup.sh
conda activate b2txt25
Language Model Environment (b2txt25_lm)
./setup_lm.sh
conda activate b2txt25_lm
Important: The project requires two separate conda environments due to conflicting PyTorch versions:
b2txt25
: PyTorch with CUDA 12.6 for model training/evaluationb2txt25_lm
: PyTorch 1.13.1 for Kaldi-based n-gram language models
Redis Setup
Redis is required for inter-process communication. Install on Ubuntu:
curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/redis.list
sudo apt-get update && sudo apt-get install redis
sudo systemctl disable redis-server
Architecture Overview
High-Level System Flow
- Neural Data Input: 512 features (2 per electrode × 256 electrodes) binned at 20ms resolution
- RNN Model: Converts neural features to phoneme logits via CTC loss
- Language Model: Decodes phoneme logits to words using n-gram models + OPT rescoring
- Redis Communication: Coordinates between RNN inference and language model processes
Key Components
Model Training (model_training/
)
- Core Script:
train_model.py
(loads config fromrnn_args.yaml
) - Model Architecture:
rnn_model.py
- 5-layer GRU with 768 hidden units - Trainer:
rnn_trainer.py
- Custom PyTorch trainer with CTC loss - Evaluation:
evaluate_model.py
- Inference pipeline with Redis communication
Language Model (language_model/
)
- Standalone Server:
language-model-standalone.py
- Redis-based LM server - Kaldi Integration: Uses custom C++ bindings for efficient n-gram decoding
- OPT Rescoring: Facebook OPT 6.7B for language model rescoring
- Build System: Complex CMake-based build for Kaldi/SRILM integration
Utilities (nejm_b2txt_utils/
)
- General Utils:
general_utils.py
- Shared utility functions - Package: Installed via
setup.py
asnejm_b2txt_utils
Analysis (analyses/
)
- Jupyter Notebooks:
figure_2.ipynb
,figure_4.ipynb
for paper figures
Common Development Tasks
Training a Model
conda activate b2txt25
cd model_training
python train_model.py
Running Evaluation Pipeline
-
Start Redis server:
redis-server
-
Start language model (separate terminal):
conda activate b2txt25_lm python language_model/language-model-standalone.py --lm_path language_model/pretrained_language_models/openwebtext_1gram_lm_sil --do_opt --nbest 100 --acoustic_scale 0.325 --blank_penalty 90 --alpha 0.55 --redis_ip localhost --gpu_number 0
-
Run evaluation (separate terminal):
conda activate b2txt25 cd model_training python evaluate_model.py --model_path ../data/t15_pretrained_rnn_baseline --data_dir ../data/hdf5_data_final --eval_type test --gpu_number 1
-
Shutdown Redis:
redis-cli shutdown
Building Language Model from Scratch
# Build SRILM (in language_model/srilm-1.7.3/)
export SRILM=$PWD
make MAKE_PIC=yes World
# Build Kaldi components (in language_model/runtime/server/x86/)
mkdir build && cd build
cmake .. && make -j8
Data Structure
Neural Data Format
- File Type: HDF5 files in
data/hdf5_data_final/
- Features: 512 neural features per 20ms bin:
- 0-64: ventral 6v threshold crossings
- 65-128: area 4 threshold crossings
- 129-192: 55b threshold crossings
- 193-256: dorsal 6v threshold crossings
- 257-320: ventral 6v spike band power
- 321-384: area 4 spike band power
- 385-448: 55b spike band power
- 449-512: dorsal 6v spike band power
Data Loading
Use load_h5py_file()
in model_training/evaluate_model_helpers.py
as reference for HDF5 data loading.
Important Notes
- GPU Requirements: OPT 6.7B requires ~12.4GB VRAM; RTX 4090s recommended
- Memory Requirements: 3-gram LM needs ~60GB RAM, 5-gram needs ~300GB RAM
- Environment Isolation: Always use correct conda environment for each component
- Redis Dependency: Many scripts require Redis server to be running
- Build Dependencies: CMake ≥3.14 and GCC ≥10.1 required for language model builds
Competition Context
This codebase also serves as baseline for the Brain-to-Text '25 Competition on Kaggle, providing reference implementations for neural signal decoding.