Pretrained ngram language models
A pretrained 1gram language model is included in this repository at language_model/pretrained_language_models/openwebtext_1gram_lm_sil. Pretrained 3gram and 5gram language models are available for download here (languageModel.tar.gz and languageModel_5gram.tar.gz) and should likewise be placed in the pretrained_language_models directory. Note that the 3gram model requires ~60GB of RAM, and the 5gram model requires ~300GB of RAM. Furthermore, OPT 6.7b requires a GPU with at least ~12.4 GB of VRAM to load for inference.
Dependencies
CMake >= 3.14
gcc >= 10.1
pytorch == 1.13.1
To install CMake and gcc on Ubuntu, simply run:
sudo apt-get install build-essential
sudo apt-get install cmake
Install language model python package
Use the setup_lm.sh script in the root directory of this repository to create the b2txt25_lm conda env and install the lm-decoder package to it. Before install, make sure that there is no build or fc_base directory in your runtime/server/x86 directory, as this may cause the build to fail.
Using a pretrained ngram language model
The language-model-standalone.py script included here is made to work with evaluate_model.py. language-model-standalone.py will do the following when run:
- Initialize
opt-6.7bit on the specified gpu (--gpu_numberarg). The first time you run the script, it will automatically downloadopt-6.7bfrom huggingface. - Initialize the ngram language model (specified with the
--lm_patharg) - Connect to the
localhostredis server (or a different server, specified by the--redis_ipand--redis_portargs) - Wait to receive phoneme logits via redis, and then make word predictions and pass them back via redis.
language-model-standalone.py input args
See the bottom of the language-model-standalone.py script for a full list of input args.
run a 1gram model
To run the 1gram language model from the root directory of this repository:
conda activate b2txt25_lm
python language_model/language-model-standalone.py --lm_path language_model/pretrained_language_models/openwebtext_1gram_lm_sil --do_opt --nbest 100 --acoustic_scale 0.325 --blank_penalty 90 --alpha 0.55 --redis_ip localhost --gpu_number 0
run a 3gram model
To run the 3gram language model from the root directory of this repository (requires ~60GB RAM):
conda activate b2txt25_lm
python language_model/language-model-standalone.py --lm_path language_model/pretrained_language_models/openwebtext_3gram_lm_sil --do_opt --nbest 100 --acoustic_scale 0.325 --blank_penalty 90 --alpha 0.55 --redis_ip localhost --gpu_number 0
run a 5gram model
To run the 5gram language model from the root directory of this repository (requires ~300GB of RAM):
conda activate b2txt25_lm
python language_model/language-model-standalone.py --lm_path language_model/pretrained_language_models/openwebtext_5gram_lm_sil --rescore --do_opt --nbest 100 --acoustic_scale 0.325 --blank_penalty 90 --alpha 0.55 --redis_ip localhost --gpu_number 0
Build a new phoneme-to-words ngram language model from scratch
-
First, build binaries for building the language model:
- Build SRILM:
cd srilm-1.7.3 export SRILM=$PWD make MAKE_PIC=yes World make cleanest export PATH=$PATH:$PWD/bin/i686-m64- Build openfst and other stuff:
cd runtime/server/x86 mkdir build cd build cmake .. make -j8 -
Build ngram LM:
cd ./examples/speech/s0/
run.sh output_dir dict_path train_corpus sil_prob formatted_train_corpus prune_threshold order