5.1 KiB
5.1 KiB
增强 lm_decoder Python 绑定以支持时间戳提取
问题
当前 lm_decoder
Python 绑定只暴露了句子和分数,没有暴露:
- Token 序列(inputs/outputs)
- 时间戳信息(times)
- 详细的似然度信息
解决方案
步骤 1: 修改 brain_speech_decoder.h
在 BrainSpeechDecoder
类中添加公有访问方法:
// 在 class BrainSpeechDecoder 的 public 部分添加
const std::vector<std::vector<int>>& GetInputs() const {
if (searcher_ == nullptr) {
static std::vector<std::vector<int>> empty;
return empty;
}
return searcher_->Inputs();
}
const std::vector<std::vector<int>>& GetOutputs() const {
if (searcher_ == nullptr) {
static std::vector<std::vector<int>> empty;
return empty;
}
return searcher_->Outputs();
}
const std::vector<std::vector<int>>& GetTimes() const {
if (searcher_ == nullptr) {
static std::vector<std::vector<int>> empty;
return empty;
}
return searcher_->Times();
}
const std::vector<std::pair<float, float>>& GetLikelihood() const {
if (searcher_ == nullptr) {
static std::vector<std::pair<float, float>> empty;
return empty;
}
return searcher_->Likelihood();
}
步骤 2: 修改 lm_decoder.cc Python 绑定
在 PYBIND11_MODULE
中添加新的方法绑定:
py::class_<BrainSpeechDecoder>(m, "BrainSpeechDecoder")
.def(py::init<std::shared_ptr<DecodeResource>, std::shared_ptr<DecodeOptions> >())
.def("SetOpt", &BrainSpeechDecoder::SetOpt)
.def("Decode", &BrainSpeechDecoder::Decode)
.def("Rescore", &BrainSpeechDecoder::Rescore)
.def("Reset", &BrainSpeechDecoder::Reset)
.def("FinishDecoding", &BrainSpeechDecoder::FinishDecoding)
.def("DecodedSomething", &BrainSpeechDecoder::DecodedSomething)
.def("result", &BrainSpeechDecoder::result)
// 新增方法
.def("get_inputs", &BrainSpeechDecoder::GetInputs,
"Get input token sequences for N-best hypotheses")
.def("get_outputs", &BrainSpeechDecoder::GetOutputs,
"Get output token sequences for N-best hypotheses")
.def("get_times", &BrainSpeechDecoder::GetTimes,
"Get timestamps for each token in N-best hypotheses")
.def("get_likelihood", &BrainSpeechDecoder::GetLikelihood,
"Get (acoustic_score, lm_score) pairs for N-best hypotheses");
步骤 3: 重新编译
cd language_model/runtime/server/x86
mkdir -p build && cd build
cmake ..
make -j$(nproc)
步骤 4: 使用增强接口
修改 language-model-standalone.py
:
# 在 Finalize 阶段获取详细信息
if nbest > 1:
# 获取基本结果
nbest_out = []
for d in ngramDecoder.result():
nbest_out.append([d.sentence, d.ac_score, d.lm_score])
# 获取时间戳和token序列(新增)
try:
inputs = ngramDecoder.get_inputs() # List[List[int]]
outputs = ngramDecoder.get_outputs() # List[List[int]]
times = ngramDecoder.get_times() # List[List[int]]
# 为每个候选添加详细信息
for i, (inp, out, time_seq) in enumerate(zip(inputs, outputs, times)):
logging.info(f"Candidate {i}:")
logging.info(f" Sentence: {nbest_out[i][0]}")
logging.info(f" Token IDs: {out}")
logging.info(f" Timestamps (frames): {time_seq}")
# 转换为可读格式(需要词表)
if symbol_table is not None:
tokens = [symbol_table[tid] for tid in out]
logging.info(f" Tokens: {tokens}")
# 生成详细的时间对齐
for token, start_frame in zip(tokens, time_seq):
time_ms = start_frame * 10 # 假设每帧10ms
logging.info(f" {token} @ {time_ms}ms (frame {start_frame})")
except AttributeError:
logging.warning("Enhanced decoder methods not available. Please recompile with updated bindings.")
示例输出
使用增强接口后,你可以获得:
Candidate 0:
Sentence: hello world
Token IDs: [15, 8, 12, 12, 15, 0, 23, 15, 18, 12, 4]
Timestamps (frames): [5, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66]
Tokens: ['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
h @ 50ms (frame 5)
e @ 120ms (frame 12)
l @ 180ms (frame 18)
l @ 240ms (frame 24)
o @ 300ms (frame 30)
@ 360ms (frame 36)
w @ 420ms (frame 42)
o @ 480ms (frame 48)
r @ 540ms (frame 54)
l @ 600ms (frame 60)
d @ 660ms (frame 66)
注意事项
- Token vs 音素:这个系统使用的是字符级别(character-level)的建模,不是音素
- 时间戳精度:时间戳是帧级别的,需要乘以帧长(通常10ms)转换为时间
- CTC 特性:由于 blank frame skipping,时间戳可能不连续
- N-best:每个候选都有独立的时间戳序列
参考
- C++ 接口:
runtime/core/decoder/search_interface.h
- WFST 解码实现:
runtime/core/decoder/ctc_wfst_beam_search.cc
- 时间戳生成:
ConvertToInputs()
方法中的decoded_frames_mapping_