#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Mobvoi Inc. All Rights Reserved. # Author: di.wu@mobvoi.com (DI WU) """Positonal Encoding Module.""" import math from typing import Tuple import torch class PositionalEncoding(torch.nn.Module): """Positional encoding. :param int d_model: embedding dim :param float dropout_rate: dropout rate :param int max_len: maximum input length PE(pos, 2i) = sin(pos/(10000^(2i/dmodel))) PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel))) """ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000, reverse: bool = False): """Construct an PositionalEncoding object.""" super().__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.max_len = max_len self.pe = torch.zeros(self.max_len, self.d_model) position = torch.arange(0, self.max_len, dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model)) self.pe[:, 0::2] = torch.sin(position * div_term) self.pe[:, 1::2] = torch.cos(position * div_term) self.pe = self.pe.unsqueeze(0) def forward(self, x: torch.Tensor, offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: """Add positional encoding. Args: x (torch.Tensor): Input. Its shape is (batch, time, ...) offset (int): position offset Returns: torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) torch.Tensor: for compatibility to RelPositionalEncoding """ assert offset + x.size(1) < self.max_len self.pe = self.pe.to(x.device) pos_emb = self.pe[:, offset:offset + x.size(1)] x = x * self.xscale + pos_emb return self.dropout(x), self.dropout(pos_emb) def position_encoding(self, offset: int, size: int) -> torch.Tensor: """ For getting encoding in a streaming fashion Attention!!!!! we apply dropout only once at the whole utterance level in a none streaming way, but will call this function several times with increasing input size in a streaming scenario, so the dropout will be applied several times. Args: offset (int): start offset size (int): requried size of position encoding Returns: torch.Tensor: Corresponding encoding """ assert offset + size < self.max_len return self.dropout(self.pe[:, offset:offset + size]) class RelPositionalEncoding(PositionalEncoding): """Relative positional encoding module. See : Appendix B in https://arxiv.org/abs/1901.02860 Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. """ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): """Initialize class.""" super().__init__(d_model, dropout_rate, max_len, reverse=True) def forward(self, x: torch.Tensor, offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: """Compute positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). torch.Tensor: Positional embedding tensor (1, time, `*`). """ assert offset + x.size(1) < self.max_len self.pe = self.pe.to(x.device) x = x * self.xscale pos_emb = self.pe[:, offset:offset + x.size(1)] return self.dropout(x), self.dropout(pos_emb) class NoPositionalEncoding(torch.nn.Module): """ No position encoding """ def __init__(self, d_model: int, dropout_rate: float): super().__init__() self.d_model = d_model self.dropout = torch.nn.Dropout(p=dropout_rate) def forward(self, x: torch.Tensor, offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: """ Just return zero vector for interface compatibility """ pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device) return self.dropout(x), pos_emb def position_encoding(self, offset: int, size: int) -> torch.Tensor: return torch.zeros(1, size, self.d_model)