model: n_input_features: 512 # number of input features in the neural data. (2 features per electrode, 256 electrodes) n_units: 768 # number of units per GRU layer rnn_dropout: 0.4 # dropout rate for the GRU layers rnn_trainable: true # whether the GRU layers are trainable n_layers: 5 # number of GRU layers patch_size: 14 # size of the input patches (14 time steps) patch_stride: 4 # stride for the input patches (4 time steps) input_network: n_input_layers: 1 # number of input layers per network (one network for each day) input_layer_sizes: - 512 # size of the input layer (number of input features) input_trainable: true # whether the input layer is trainable input_layer_dropout: 0.2 # dropout rate for the input layer gpu_number: '1' # GPU number to use for training, formatted as a string (e.g., '0', '1', etc.) mode: train use_amp: true # whether to use automatic mixed precision (AMP) for training # TPU and distributed training settings use_tpu: true # whether to use TPU for training (set to true for TPU) num_tpu_cores: 8 # number of TPU cores to use (full TPU v3-8) gradient_accumulation_steps: 2 # number of gradient accumulation steps for distributed training (2x32=64 effective batch size) output_dir: trained_models/baseline_rnn # directory to save the trained model and logs checkpoint_dir: trained_models/baseline_rnn/checkpoint # directory to save checkpoints during training init_from_checkpoint: false # whether to initialize the model from a checkpoint init_checkpoint_path: None # path to the checkpoint to initialize the model from, if any save_best_checkpoint: true # whether to save the best checkpoint based on validation metrics save_all_val_steps: false # whether to save checkpoints at all validation steps save_final_model: false # whether to save the final model after training save_val_metrics: true # whether to save validation metrics during training early_stopping: false # whether to use early stopping based on validation metrics early_stopping_val_steps: 20 # number of validation steps to wait before stopping training if no improvement is seen num_training_batches: 120000 # number of training batches to run lr_scheduler_type: cosine # type of learning rate scheduler to use lr_max: 0.005 # maximum learning rate for the main model lr_min: 0.0001 # minimum learning rate for the main model lr_decay_steps: 120000 # number of steps for the learning rate decay lr_warmup_steps: 1000 # number of warmup steps for the learning rate scheduler lr_max_day: 0.005 # maximum learning rate for the day specific input layers lr_min_day: 0.0001 # minimum learning rate for the day specific input layers lr_decay_steps_day: 120000 # number of steps for the learning rate decay for the day specific input layers lr_warmup_steps_day: 1000 # number of warmup steps for the learning rate scheduler for the day specific input layers beta0: 0.9 # beta0 parameter for the Adam optimizer beta1: 0.999 # beta1 parameter for the Adam optimizer epsilon: 0.1 # epsilon parameter for the Adam optimizer weight_decay: 0.001 # weight decay for the main model weight_decay_day: 0 # weight decay for the day specific input layers seed: 10 # random seed for reproducibility grad_norm_clip_value: 10 # gradient norm clipping value batches_per_train_log: 200 # number of batches per training log batches_per_val_step: 2000 # number of batches per validation step batches_per_save: 0 # number of batches per save log_individual_day_val_PER: true # whether to log individual day validation performance log_val_skip_logs: false # whether to skip logging validation metrics save_val_logits: true # whether to save validation logits save_val_data: false # whether to save validation data dataset: data_transforms: white_noise_std: 1.0 # standard deviation of the white noise added to the data constant_offset_std: 0.2 # standard deviation of the constant offset added to the data random_walk_std: 0.0 # standard deviation of the random walk added to the data random_walk_axis: -1 # axis along which the random walk is applied static_gain_std: 0.0 # standard deviation of the static gain applied to the data random_cut: 3 # number of time steps to randomly cut from the beginning of each batch of trials smooth_kernel_size: 100 # size of the smoothing kernel applied to the data smooth_data: true # whether to smooth the data smooth_kernel_std: 2 # standard deviation of the smoothing kernel applied to the data neural_dim: 512 # dimensionality of the neural data batch_size: 32 # batch size for training (reduced for TPU memory constraints) n_classes: 41 # number of classes (phonemes) in the dataset max_seq_elements: 500 # maximum number of sequence elements (phonemes) for any trial days_per_batch: 4 # number of randomly-selected days to include in each batch seed: 1 # random seed for reproducibility num_dataloader_workers: 0 # set to 0 for TPU to avoid multiprocessing issues loader_shuffle: false # whether to shuffle the data loader must_include_days: null # specific days to include in the dataset test_percentage: 0.1 # percentage of data to use for testing feature_subset: null # specific features to include in the dataset dataset_dir: ../data/hdf5_data_final # directory containing the dataset bad_trials_dict: null # dictionary of bad trials to exclude from the dataset sessions: # list of sessions to include in the dataset - t15.2023.08.11 - t15.2023.08.13 - t15.2023.08.18 - t15.2023.08.20 - t15.2023.08.25 - t15.2023.08.27 - t15.2023.09.01 - t15.2023.09.03 - t15.2023.09.24 - t15.2023.09.29 - t15.2023.10.01 - t15.2023.10.06 - t15.2023.10.08 - t15.2023.10.13 - t15.2023.10.15 - t15.2023.10.20 - t15.2023.10.22 - t15.2023.11.03 - t15.2023.11.04 - t15.2023.11.17 - t15.2023.11.19 - t15.2023.11.26 - t15.2023.12.03 - t15.2023.12.08 - t15.2023.12.10 - t15.2023.12.17 - t15.2023.12.29 - t15.2024.02.25 - t15.2024.03.03 - t15.2024.03.08 - t15.2024.03.15 - t15.2024.03.17 - t15.2024.04.25 - t15.2024.04.28 - t15.2024.05.10 - t15.2024.06.14 - t15.2024.07.19 - t15.2024.07.21 - t15.2024.07.28 - t15.2025.01.10 - t15.2025.01.12 - t15.2025.03.14 - t15.2025.03.16 - t15.2025.03.30 - t15.2025.04.13 dataset_probability_val: # probability of including a trial in the validation set (0 or 1) - 0 # no val or test data from this day - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 0 # no val or test data from this day - 1 - 1 - 1 - 0 # no val or test data from this day - 0 # no val or test data from this day - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1