# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import os import torch import yaml from wenet.transformer.asr_model import init_asr_model from wenet.utils.checkpoint import load_checkpoint if __name__ == '__main__': parser = argparse.ArgumentParser(description='export your script model') parser.add_argument('--config', required=True, help='config file') parser.add_argument('--checkpoint', required=True, help='checkpoint model') parser.add_argument('--output_file', required=True, help='output file') parser.add_argument('--output_quant_file', default=None, help='output quantized model file') args = parser.parse_args() # No need gpu for model export os.environ['CUDA_VISIBLE_DEVICES'] = '-1' with open(args.config, 'r') as fin: configs = yaml.load(fin, Loader=yaml.FullLoader) model = init_asr_model(configs) print(model) load_checkpoint(model, args.checkpoint) # Export jit torch script model script_model = torch.jit.script(model) script_model.save(args.output_file) print('Export model successfully, see {}'.format(args.output_file)) # Export quantized jit torch script model if args.output_quant_file: quantized_model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) print(quantized_model) script_quant_model = torch.jit.script(quantized_model) script_quant_model.save(args.output_quant_file) print('Export quantized model successfully, ' 'see {}'.format(args.output_quant_file))