import os import torch import numpy as np import pandas as pd import redis from omegaconf import OmegaConf import time from tqdm import tqdm import editdistance import argparse from rnn_model import GRUDecoder from evaluate_model_helpers import * # argument parser for command line arguments parser = argparse.ArgumentParser(description='Evaluate a pretrained RNN model on the copy task dataset.') parser.add_argument('--model_path', type=str, default='../data/t15_pretrained_rnn_baseline', help='Path to the pretrained model directory (relative to the current working directory).') parser.add_argument('--data_dir', type=str, default='../data/hdf5_data_final', help='Path to the dataset directory (relative to the current working directory).') parser.add_argument('--eval_type', type=str, default='test', choices=['val', 'test'], help='Evaluation type: "val" for validation set, "test" for test set. ' 'If "test", ground truth is not available.') parser.add_argument('--csv_path', type=str, default='../data/t15_copyTaskData_description.csv', help='Path to the CSV file with metadata about the dataset (relative to the current working directory).') parser.add_argument('--gpu_number', type=int, default=1, help='GPU number to use for RNN model inference. Set to -1 to use CPU.') args = parser.parse_args() # paths to model and data directories # Note: these paths are relative to the current working directory model_path = args.model_path data_dir = args.data_dir # define evaluation type eval_type = args.eval_type # can be 'val' or 'test'. if 'test', ground truth is not available # load csv file b2txt_csv_df = pd.read_csv(args.csv_path) # load model args model_args = OmegaConf.load(os.path.join(model_path, 'checkpoint/args.yaml')) # set up gpu device gpu_number = args.gpu_number if torch.cuda.is_available() and gpu_number >= 0: if gpu_number >= torch.cuda.device_count(): raise ValueError(f'GPU number {gpu_number} is out of range. Available GPUs: {torch.cuda.device_count()}') device = f'cuda:{gpu_number}' device = torch.device(device) print(f'Using {device} for model inference.') else: if gpu_number >= 0: print(f'GPU number {gpu_number} requested but not available.') print('Using CPU for model inference.') device = torch.device('cpu') # define model model = GRUDecoder( neural_dim = model_args['model']['n_input_features'], n_units = model_args['model']['n_units'], n_days = len(model_args['dataset']['sessions']), n_classes = model_args['dataset']['n_classes'], rnn_dropout = model_args['model']['rnn_dropout'], input_dropout = model_args['model']['input_network']['input_layer_dropout'], n_layers = model_args['model']['n_layers'], patch_size = model_args['model']['patch_size'], patch_stride = model_args['model']['patch_stride'], ) # load model weights checkpoint = torch.load(os.path.join(model_path, 'checkpoint/best_checkpoint'), weights_only=False) # rename keys to not start with "module." (happens if model was saved with DataParallel) for key in list(checkpoint['model_state_dict'].keys()): checkpoint['model_state_dict'][key.replace("module.", "")] = checkpoint['model_state_dict'].pop(key) checkpoint['model_state_dict'][key.replace("_orig_mod.", "")] = checkpoint['model_state_dict'].pop(key) model.load_state_dict(checkpoint['model_state_dict']) # add model to device model.to(device) # set model to eval mode model.eval() # load data for each session test_data = {} total_test_trials = 0 for session in model_args['dataset']['sessions']: files = [f for f in os.listdir(os.path.join(data_dir, session)) if f.endswith('.hdf5')] if f'data_{eval_type}.hdf5' in files: eval_file = os.path.join(data_dir, session, f'data_{eval_type}.hdf5') data = load_h5py_file(eval_file, b2txt_csv_df) test_data[session] = data total_test_trials += len(test_data[session]["neural_features"]) print(f'Loaded {len(test_data[session]["neural_features"])} {eval_type} trials for session {session}.') print(f'Total number of {eval_type} trials: {total_test_trials}') print() # put neural data through the pretrained model to get phoneme predictions (logits) with tqdm(total=total_test_trials, desc='Predicting phoneme sequences', unit='trial') as pbar: for session, data in test_data.items(): data['logits'] = [] data['pred_seq'] = [] input_layer = model_args['dataset']['sessions'].index(session) for trial in range(len(data['neural_features'])): # get neural input for the trial neural_input = data['neural_features'][trial] # add batch dimension neural_input = np.expand_dims(neural_input, axis=0) # convert to torch tensor neural_input = torch.tensor(neural_input, device=device, dtype=torch.bfloat16) # run decoding step logits = runSingleDecodingStep(neural_input, input_layer, model, model_args, device) data['logits'].append(logits) pbar.update(1) pbar.close() # convert logits to phoneme sequences and print them out for session, data in test_data.items(): data['pred_seq'] = [] for trial in range(len(data['logits'])): logits = data['logits'][trial][0] pred_seq = np.argmax(logits, axis=-1) # remove blanks (0) pred_seq = [int(p) for p in pred_seq if p != 0] # remove consecutive duplicates pred_seq = [pred_seq[i] for i in range(len(pred_seq)) if i == 0 or pred_seq[i] != pred_seq[i-1]] # convert to phonemes pred_seq = [LOGIT_TO_PHONEME[p] for p in pred_seq] # add to data data['pred_seq'].append(pred_seq) # print out the predicted sequences block_num = data['block_num'][trial] trial_num = data['trial_num'][trial] print(f'Session: {session}, Block: {block_num}, Trial: {trial_num}') if eval_type == 'val': sentence_label = data['sentence_label'][trial] true_seq = data['seq_class_ids'][trial][0:data['seq_len'][trial]] true_seq = [LOGIT_TO_PHONEME[p] for p in true_seq] print(f'Sentence label: {sentence_label}') print(f'True sequence: {" ".join(true_seq)}') print(f'Predicted Sequence: {" ".join(pred_seq)}') print() # language model inference via redis # make sure that the standalone language model is running on the localhost redis ip # see README.md for instructions on how to run the language model r = redis.Redis(host='localhost', port=6379, db=0) r.flushall() # clear all streams in redis # define redis streams for the remote language model remote_lm_input_stream = 'remote_lm_input' remote_lm_output_partial_stream = 'remote_lm_output_partial' remote_lm_output_final_stream = 'remote_lm_output_final' # set timestamps for last entries seen in the redis streams remote_lm_output_partial_lastEntrySeen = get_current_redis_time_ms(r) remote_lm_output_final_lastEntrySeen = get_current_redis_time_ms(r) remote_lm_done_resetting_lastEntrySeen = get_current_redis_time_ms(r) remote_lm_done_finalizing_lastEntrySeen = get_current_redis_time_ms(r) remote_lm_done_updating_lastEntrySeen = get_current_redis_time_ms(r) lm_results = { 'session': [], 'block': [], 'trial': [], 'true_sentence': [], 'pred_sentence': [], } # loop through all trials and put logits into the remote language model to get text predictions # note: this takes ~15-20 minutes to run on the entire test split with the 5-gram LM + OPT rescoring (RTX 4090) with tqdm(total=total_test_trials, desc='Running remote language model', unit='trial') as pbar: for session in test_data.keys(): for trial in range(len(test_data[session]['logits'])): # get trial logits and rearrange them for the LM logits = rearrange_speech_logits_pt(test_data[session]['logits'][trial])[0] # reset language model remote_lm_done_resetting_lastEntrySeen = reset_remote_language_model(r, remote_lm_done_resetting_lastEntrySeen) ''' # update language model parameters remote_lm_done_updating_lastEntrySeen = update_remote_lm_params( r, remote_lm_done_updating_lastEntrySeen, acoustic_scale=0.35, blank_penalty=90.0, alpha=0.55, ) ''' # put logits into LM remote_lm_output_partial_lastEntrySeen, decoded = send_logits_to_remote_lm( r, remote_lm_input_stream, remote_lm_output_partial_stream, remote_lm_output_partial_lastEntrySeen, logits, ) # finalize remote LM remote_lm_output_final_lastEntrySeen, lm_out = finalize_remote_lm( r, remote_lm_output_final_stream, remote_lm_output_final_lastEntrySeen, ) # get the best candidate sentence best_candidate_sentence = lm_out['candidate_sentences'][0] # store results lm_results['session'].append(session) lm_results['block'].append(test_data[session]['block_num'][trial]) lm_results['trial'].append(test_data[session]['trial_num'][trial]) if eval_type == 'val': lm_results['true_sentence'].append(test_data[session]['sentence_label'][trial]) else: lm_results['true_sentence'].append(None) lm_results['pred_sentence'].append(best_candidate_sentence) # update progress bar pbar.update(1) pbar.close() # if using the validation set, lets calculate the aggregate word error rate (WER) if eval_type == 'val': total_true_length = 0 total_edit_distance = 0 lm_results['edit_distance'] = [] lm_results['num_words'] = [] for i in range(len(lm_results['pred_sentence'])): true_sentence = remove_punctuation(lm_results['true_sentence'][i]).strip() pred_sentence = remove_punctuation(lm_results['pred_sentence'][i]).strip() ed = editdistance.eval(true_sentence.split(), pred_sentence.split()) total_true_length += len(true_sentence.split()) total_edit_distance += ed lm_results['edit_distance'].append(ed) lm_results['num_words'].append(len(true_sentence.split())) print(f'{lm_results["session"][i]} - Block {lm_results["block"][i]}, Trial {lm_results["trial"][i]}') print(f'True sentence: {true_sentence}') print(f'Predicted sentence: {pred_sentence}') print(f'WER: {ed} / {100 * len(true_sentence.split())} = {ed / len(true_sentence.split()):.2f}%') print() print(f'Total true sentence length: {total_true_length}') print(f'Total edit distance: {total_edit_distance}') print(f'Aggregate Word Error Rate (WER): {100 * total_edit_distance / total_true_length:.2f}%') # write predicted sentences to a csv file. put a timestamp in the filename (YYYYMMDD_HHMMSS) output_file = os.path.join(model_path, f'baseline_rnn_{eval_type}_predicted_sentences_{time.strftime("%Y%m%d_%H%M%S")}.csv') ids = [i for i in range(len(lm_results['pred_sentence']))] df_out = pd.DataFrame({'id': ids, 'text': lm_results['pred_sentence']}) df_out.to_csv(output_file, index=False)