tpu
This commit is contained in:
@@ -192,9 +192,12 @@ class BrainToTextDecoder_Trainer:
|
|||||||
# For TPU environments, we need to be more careful about DataLoader configuration
|
# For TPU environments, we need to be more careful about DataLoader configuration
|
||||||
use_tpu = self.args.get('use_tpu', False)
|
use_tpu = self.args.get('use_tpu', False)
|
||||||
|
|
||||||
|
# TPU doesn't handle batch_size=None well, so use batch_size=1 for TPU
|
||||||
|
batch_size_setting = 1 if use_tpu else None
|
||||||
|
|
||||||
self.train_loader = DataLoader(
|
self.train_loader = DataLoader(
|
||||||
self.train_dataset,
|
self.train_dataset,
|
||||||
batch_size = None, # Dataset.__getitem__() already returns batches
|
batch_size = batch_size_setting, # Dataset.__getitem__() already returns batches, but TPU needs batch_size=1
|
||||||
shuffle = self.args['dataset']['loader_shuffle'],
|
shuffle = self.args['dataset']['loader_shuffle'],
|
||||||
num_workers = num_workers,
|
num_workers = num_workers,
|
||||||
pin_memory = not use_tpu # TPU doesn't support pin_memory
|
pin_memory = not use_tpu # TPU doesn't support pin_memory
|
||||||
@@ -213,7 +216,7 @@ class BrainToTextDecoder_Trainer:
|
|||||||
)
|
)
|
||||||
self.val_loader = DataLoader(
|
self.val_loader = DataLoader(
|
||||||
self.val_dataset,
|
self.val_dataset,
|
||||||
batch_size = None, # Dataset.__getitem__() already returns batches
|
batch_size = batch_size_setting, # Dataset.__getitem__() already returns batches, but TPU needs batch_size=1
|
||||||
shuffle = False,
|
shuffle = False,
|
||||||
num_workers = 0, # Keep validation dataloader single-threaded for consistency
|
num_workers = 0, # Keep validation dataloader single-threaded for consistency
|
||||||
pin_memory = not use_tpu # TPU doesn't support pin_memory
|
pin_memory = not use_tpu # TPU doesn't support pin_memory
|
||||||
@@ -252,29 +255,19 @@ class BrainToTextDecoder_Trainer:
|
|||||||
param.requires_grad = False
|
param.requires_grad = False
|
||||||
|
|
||||||
# Prepare model, optimizer, scheduler, and dataloaders for distributed training
|
# Prepare model, optimizer, scheduler, and dataloaders for distributed training
|
||||||
# For TPU environments, we may need special handling of DataLoaders
|
(
|
||||||
if use_tpu:
|
self.model,
|
||||||
# On TPU, prepare DataLoaders separately to avoid batch_sampler issues
|
self.optimizer,
|
||||||
self.model, self.optimizer, self.learning_rate_scheduler = self.accelerator.prepare(
|
self.learning_rate_scheduler,
|
||||||
self.model, self.optimizer, self.learning_rate_scheduler
|
self.train_loader,
|
||||||
)
|
self.val_loader,
|
||||||
# Manually move DataLoaders to device if needed - TPU should handle this automatically
|
) = self.accelerator.prepare(
|
||||||
# through the Accelerator during training/validation loops
|
self.model,
|
||||||
else:
|
self.optimizer,
|
||||||
# Standard preparation for GPU/CPU
|
self.learning_rate_scheduler,
|
||||||
(
|
self.train_loader,
|
||||||
self.model,
|
self.val_loader,
|
||||||
self.optimizer,
|
)
|
||||||
self.learning_rate_scheduler,
|
|
||||||
self.train_loader,
|
|
||||||
self.val_loader,
|
|
||||||
) = self.accelerator.prepare(
|
|
||||||
self.model,
|
|
||||||
self.optimizer,
|
|
||||||
self.learning_rate_scheduler,
|
|
||||||
self.train_loader,
|
|
||||||
self.val_loader,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.logger.info("Prepared model and dataloaders with Accelerator")
|
self.logger.info("Prepared model and dataloaders with Accelerator")
|
||||||
|
|
||||||
@@ -466,6 +459,13 @@ class BrainToTextDecoder_Trainer:
|
|||||||
Performing augmentations is much faster on GPU than CPU
|
Performing augmentations is much faster on GPU than CPU
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
# Handle TPU case where DataLoader with batch_size=1 adds an extra dimension
|
||||||
|
use_tpu = self.args.get('use_tpu', False)
|
||||||
|
if use_tpu and features.dim() == 4 and features.size(0) == 1:
|
||||||
|
features = features.squeeze(0) # Remove the extra batch dimension added by DataLoader
|
||||||
|
if isinstance(n_time_steps, torch.Tensor) and n_time_steps.dim() == 2:
|
||||||
|
n_time_steps = n_time_steps.squeeze(0)
|
||||||
|
|
||||||
data_shape = features.shape
|
data_shape = features.shape
|
||||||
batch_size = data_shape[0]
|
batch_size = data_shape[0]
|
||||||
channels = data_shape[-1]
|
channels = data_shape[-1]
|
||||||
|
Reference in New Issue
Block a user