competition update
This commit is contained in:
134
language_model/wenet/transformer/convolution.py
Normal file
134
language_model/wenet/transformer/convolution.py
Normal file
@@ -0,0 +1,134 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2021 Mobvoi Inc. All Rights Reserved.
|
||||
# Author: di.wu@mobvoi.com (DI WU)
|
||||
"""ConvolutionModule definition."""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from typeguard import check_argument_types
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
"""ConvolutionModule in Conformer model."""
|
||||
def __init__(self,
|
||||
channels: int,
|
||||
kernel_size: int = 15,
|
||||
activation: nn.Module = nn.ReLU(),
|
||||
norm: str = "batch_norm",
|
||||
causal: bool = False,
|
||||
bias: bool = True):
|
||||
"""Construct an ConvolutionModule object.
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernel size of conv layers.
|
||||
causal (int): Whether use causal convolution or not
|
||||
"""
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
|
||||
self.pointwise_conv1 = nn.Conv1d(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
# self.lorder is used to distinguish if it's a causal convolution,
|
||||
# if self.lorder > 0: it's a causal convolution, the input will be
|
||||
# padded with self.lorder frames on the left in forward.
|
||||
# else: it's a symmetrical convolution
|
||||
if causal:
|
||||
padding = 0
|
||||
self.lorder = kernel_size - 1
|
||||
else:
|
||||
# kernel_size should be an odd number for none causal convolution
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.lorder = 0
|
||||
self.depthwise_conv = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=padding,
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
assert norm in ['batch_norm', 'layer_norm']
|
||||
if norm == "batch_norm":
|
||||
self.use_layer_norm = False
|
||||
self.norm = nn.BatchNorm1d(channels)
|
||||
else:
|
||||
self.use_layer_norm = True
|
||||
self.norm = nn.LayerNorm(channels)
|
||||
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.activation = activation
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask_pad: Optional[torch.Tensor] = None,
|
||||
cache: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute convolution module.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, channels).
|
||||
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time)
|
||||
cache (torch.Tensor): left context cache, it is only
|
||||
used in causal convolution
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, channels).
|
||||
"""
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.transpose(1, 2) # (#batch, channels, time)
|
||||
|
||||
# mask batch padding
|
||||
if mask_pad is not None:
|
||||
x.masked_fill_(~mask_pad, 0.0)
|
||||
|
||||
if self.lorder > 0:
|
||||
if cache is None:
|
||||
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
||||
else:
|
||||
assert cache.size(0) == x.size(0)
|
||||
assert cache.size(1) == x.size(1)
|
||||
x = torch.cat((cache, x), dim=2)
|
||||
assert (x.size(2) > self.lorder)
|
||||
new_cache = x[:, :, -self.lorder:]
|
||||
else:
|
||||
# It's better we just return None if no cache is requried,
|
||||
# However, for JIT export, here we just fake one tensor instead of
|
||||
# None.
|
||||
new_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device)
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
||||
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
x = self.depthwise_conv(x)
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose(1, 2)
|
||||
x = self.activation(self.norm(x))
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose(1, 2)
|
||||
x = self.pointwise_conv2(x)
|
||||
# mask batch padding
|
||||
if mask_pad is not None:
|
||||
x.masked_fill_(~mask_pad, 0.0)
|
||||
|
||||
return x.transpose(1, 2), new_cache
|
Reference in New Issue
Block a user