competition update

This commit is contained in:
nckcard
2025-07-02 12:18:09 -07:00
parent 9e17716a4a
commit 77dbcf868f
2615 changed files with 1648116 additions and 125 deletions

View File

@@ -0,0 +1,3 @@
# So many lint errors now, we just ignore it now.
# We will try to fix it in the future.
exclude_files=.*

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,296 @@
// lat/determinize-lattice-pruned.h
// Copyright 2009-2012 Microsoft Corporation
// 2012-2013 Johns Hopkins University (Author: Daniel Povey)
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_LAT_DETERMINIZE_LATTICE_PRUNED_H_
#define KALDI_LAT_DETERMINIZE_LATTICE_PRUNED_H_
#include <fst/fstlib.h>
#include <fst/fst-decl.h>
#include <algorithm>
#include <map>
#include <set>
#include <vector>
#include "fstext/lattice-weight.h"
// #include "hmm/transition-model.h"
#include "itf/options-itf.h"
#include "lat/kaldi-lattice.h"
namespace fst {
/// \addtogroup fst_extensions
/// @{
// For example of usage, see test-determinize-lattice-pruned.cc
/*
DeterminizeLatticePruned implements a special form of determinization with
epsilon removal, optimized for a phase of lattice generation. This algorithm
also does pruning at the same time-- the combination is more efficient as it
somtimes prevents us from creating a lot of states that would later be pruned
away. This allows us to increase the lattice-beam and not have the algorithm
blow up. Also, because our algorithm processes states in order from those
that appear on high-scoring paths down to those that appear on low-scoring
paths, we can easily terminate the algorithm after a certain specified number
of states or arcs.
The input is an FST with weight-type BaseWeightType (usually a pair of floats,
with a lexicographical type of order, such as LatticeWeightTpl<float>).
Typically this would be a state-level lattice, with input symbols equal to
words, and output-symbols equal to p.d.f's (so like the inverse of HCLG). Imagine representing this as an
acceptor of type CompactLatticeWeightTpl<float>, in which the input/output
symbols are words, and the weights contain the original weights together with
strings (with zero or one symbol in them) containing the original output labels
(the p.d.f.'s). We determinize this using acceptor determinization with
epsilon removal. Remember (from lattice-weight.h) that
CompactLatticeWeightTpl has a special kind of semiring where we always take
the string corresponding to the best cost (of type BaseWeightType), and
discard the other. This corresponds to taking the best output-label sequence
(of p.d.f.'s) for each input-label sequence (of words). We couldn't use the
Gallic weight for this, or it would die as soon as it detected that the input
FST was non-functional. In our case, any acyclic FST (and many cyclic ones)
can be determinized.
We assume that there is a function
Compare(const BaseWeightType &a, const BaseWeightType &b)
that returns (-1, 0, 1) according to whether (a < b, a == b, a > b) in the
total order on the BaseWeightType... this information should be the
same as NaturalLess would give, but it's more efficient to do it this way.
You can define this for things like TropicalWeight if you need to instantiate
this class for that weight type.
We implement this determinization in a special way to make it efficient for
the types of FSTs that we will apply it to. One issue is that if we
explicitly represent the strings (in CompactLatticeWeightTpl) as vectors of
type vector<IntType>, the algorithm takes time quadratic in the length of
words (in states), because propagating each arc involves copying a whole
vector (of integers representing p.d.f.'s). Instead we use a hash structure
where each string is a pointer (Entry*), and uses a hash from (Entry*,
IntType), to the successor string (and a way to get the latest IntType and the
ancestor Entry*). [this is the class LatticeStringRepository].
Another issue is that rather than representing a determinized-state as a
collection of (state, weight), we represent it in a couple of reduced forms.
Suppose a determinized-state is a collection of (state, weight) pairs; call
this the "canonical representation". Note: these collections are always
normalized to remove any common weight and string part. Define end-states as
the subset of states that have an arc out of them with a label on, or are
final. If we represent a determinized-state a the set of just its (end-state,
weight) pairs, this will be a valid and more compact representation, and will
lead to a smaller set of determinized states (like early minimization). Call
this collection of (end-state, weight) pairs the "minimal representation". As
a mechanism to reduce compute, we can also consider another representation.
In the determinization algorithm, we start off with a set of (begin-state,
weight) pairs (where the "begin-states" are initial or have a label on the
transition into them), and the "canonical representation" consists of the
epsilon-closure of this set (i.e. follow epsilons). Call this set of
(begin-state, weight) pairs, appropriately normalized, the "initial
representation". If two initial representations are the same, the "canonical
representation" and hence the "minimal representation" will be the same. We
can use this to reduce compute. Note that if two initial representations are
different, this does not preclude the other representations from being the same.
*/
struct DeterminizeLatticePrunedOptions {
float delta; // A small offset used to measure equality of weights.
int max_mem; // If >0, determinization will fail and return false
// when the algorithm's (approximate) memory consumption crosses this threshold.
int max_loop; // If >0, can be used to detect non-determinizable input
// (a case that wouldn't be caught by max_mem).
int max_states;
int max_arcs;
float retry_cutoff;
DeterminizeLatticePrunedOptions(): delta(kDelta),
max_mem(-1),
max_loop(-1),
max_states(-1),
max_arcs(-1),
retry_cutoff(0.5) { }
void Register (kaldi::OptionsItf *opts) {
opts->Register("delta", &delta, "Tolerance used in determinization");
opts->Register("max-mem", &max_mem, "Maximum approximate memory usage in "
"determinization (real usage might be many times this)");
opts->Register("max-arcs", &max_arcs, "Maximum number of arcs in "
"output FST (total, not per state");
opts->Register("max-states", &max_states, "Maximum number of arcs in output "
"FST (total, not per state");
opts->Register("max-loop", &max_loop, "Option used to detect a particular "
"type of determinization failure, typically due to invalid input "
"(e.g., negative-cost loops)");
opts->Register("retry-cutoff", &retry_cutoff, "Controls pruning un-determinized "
"lattice and retrying determinization: if effective-beam < "
"retry-cutoff * beam, we prune the raw lattice and retry. Avoids "
"ever getting empty output for long segments.");
}
};
struct DeterminizeLatticePhonePrunedOptions {
// delta: a small offset used to measure equality of weights.
float delta;
// max_mem: if > 0, determinization will fail and return false when the
// algorithm's (approximate) memory consumption crosses this threshold.
int max_mem;
// phone_determinize: if true, do a first pass determinization on both phones
// and words.
bool phone_determinize;
// word_determinize: if true, do a second pass determinization on words only.
bool word_determinize;
// minimize: if true, push and minimize after determinization.
bool minimize;
DeterminizeLatticePhonePrunedOptions(): delta(kDelta),
max_mem(50000000),
phone_determinize(true),
word_determinize(true),
minimize(false) {}
void Register (kaldi::OptionsItf *opts) {
opts->Register("delta", &delta, "Tolerance used in determinization");
opts->Register("max-mem", &max_mem, "Maximum approximate memory usage in "
"determinization (real usage might be many times this).");
opts->Register("phone-determinize", &phone_determinize, "If true, do an "
"initial pass of determinization on both phones and words (see"
" also --word-determinize)");
opts->Register("word-determinize", &word_determinize, "If true, do a second "
"pass of determinization on words only (see also "
"--phone-determinize)");
opts->Register("minimize", &minimize, "If true, push and minimize after "
"determinization.");
}
};
/**
This function implements the normal version of DeterminizeLattice, in which the
output strings are represented using sequences of arcs, where all but the
first one has an epsilon on the input side. It also prunes using the beam
in the "prune" parameter. The input FST must be topologically sorted in order
for the algorithm to work. For efficiency it is recommended to sort ilabel as well.
Returns true on success, and false if it had to terminate the determinization
earlier than specified by the "prune" beam-- that is, if it terminated because
of the max_mem, max_loop or max_arcs constraints in the options.
CAUTION: you may want to use the version below which outputs to CompactLattice.
*/
template<class Weight>
bool DeterminizeLatticePruned(
const ExpandedFst<ArcTpl<Weight> > &ifst,
double prune,
MutableFst<ArcTpl<Weight> > *ofst,
DeterminizeLatticePrunedOptions opts = DeterminizeLatticePrunedOptions());
/* This is a version of DeterminizeLattice with a slightly more "natural" output format,
where the output sequences are encoded using the CompactLatticeArcTpl template
(i.e. the sequences of output symbols are represented directly as strings The input
FST must be topologically sorted in order for the algorithm to work. For efficiency
it is recommended to sort the ilabel for the input FST as well.
Returns true on normal success, and false if it had to terminate the determinization
earlier than specified by the "prune" beam-- that is, if it terminated because
of the max_mem, max_loop or max_arcs constraints in the options.
CAUTION: if Lattice is the input, you need to Invert() before calling this,
so words are on the input side.
*/
template<class Weight, class IntType>
bool DeterminizeLatticePruned(
const ExpandedFst<ArcTpl<Weight> >&ifst,
double prune,
MutableFst<ArcTpl<CompactLatticeWeightTpl<Weight, IntType> > > *ofst,
DeterminizeLatticePrunedOptions opts = DeterminizeLatticePrunedOptions());
// /** This function takes in lattices and inserts phones at phone boundaries. It
// uses the transition model to work out the transition_id to phone map. The
// returning value is the starting index of the phone label. Typically we pick
// (maximum_output_label_index + 1) as this value. The inserted phones are then
// mapped to (returning_value + original_phone_label) in the new lattice. The
// returning value will be used by DeterminizeLatticeDeletePhones() where it
// works out the phones according to this value.
// */
// template<class Weight>
// typename ArcTpl<Weight>::Label DeterminizeLatticeInsertPhones(
// const kaldi::TransitionModel &trans_model,
// MutableFst<ArcTpl<Weight> > *fst);
//
// /** This function takes in lattices and deletes "phones" from them. The "phones"
// here are actually any label that is larger than first_phone_label because
// when we insert phones into the lattice, we map the original phone label to
// (first_phone_label + original_phone_label). It is supposed to be used
// together with DeterminizeLatticeInsertPhones()
// */
// template<class Weight>
// void DeterminizeLatticeDeletePhones(
// typename ArcTpl<Weight>::Label first_phone_label,
// MutableFst<ArcTpl<Weight> > *fst);
//
// /** This function is a wrapper of DeterminizeLatticePhonePrunedFirstPass() and
// DeterminizeLatticePruned(). If --phone-determinize is set to true, it first
// calls DeterminizeLatticePhonePrunedFirstPass() to do the initial pass of
// determinization on the phone + word lattices. If --word-determinize is set
// true, it then does a second pass of determinization on the word lattices by
// calling DeterminizeLatticePruned(). If both are set to false, then it gives
// a warning and copying the lattices without determinization.
//
// Note: the point of doing first a phone-level determinization pass and then
// a word-level determinization pass is that it allows us to determinize
// deeper lattices without "failing early" and returning a too-small lattice
// due to the max-mem constraint. The result should be the same as word-level
// determinization in general, but for deeper lattices it is a bit faster,
// despite the fact that we now have two passes of determinization by default.
// */
// template<class Weight, class IntType>
// bool DeterminizeLatticePhonePruned(
// const kaldi::TransitionModel &trans_model,
// const ExpandedFst<ArcTpl<Weight> > &ifst,
// double prune,
// MutableFst<ArcTpl<CompactLatticeWeightTpl<Weight, IntType> > > *ofst,
// DeterminizeLatticePhonePrunedOptions opts
// = DeterminizeLatticePhonePrunedOptions());
//
// /** "Destructive" version of DeterminizeLatticePhonePruned() where the input
// lattice might be changed.
// */
// template<class Weight, class IntType>
// bool DeterminizeLatticePhonePruned(
// const kaldi::TransitionModel &trans_model,
// MutableFst<ArcTpl<Weight> > *ifst,
// double prune,
// MutableFst<ArcTpl<CompactLatticeWeightTpl<Weight, IntType> > > *ofst,
// DeterminizeLatticePhonePrunedOptions opts
// = DeterminizeLatticePhonePrunedOptions());
//
// /** This function is a wrapper of DeterminizeLatticePhonePruned() that works for
// Lattice type FSTs. It simplifies the calling process by calling
// TopSort() Invert() and ArcSort() for you.
// Unlike other determinization routines, the function
// requires "ifst" to have transition-id's on the input side and words on the
// output side.
// This function can be used as the top-level interface to all the determinization
// code.
// */
// bool DeterminizeLatticePhonePrunedWrapper(
// const kaldi::TransitionModel &trans_model,
// MutableFst<kaldi::LatticeArc> *ifst,
// double prune,
// MutableFst<kaldi::CompactLatticeArc> *ofst,
// DeterminizeLatticePhonePrunedOptions opts
// = DeterminizeLatticePhonePrunedOptions());
/// @} end "addtogroup fst_extensions"
} // end namespace fst
#endif

View File

@@ -0,0 +1,506 @@
// lat/kaldi-lattice.cc
// Copyright 2009-2011 Microsoft Corporation
// 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "lat/kaldi-lattice.h"
#include "fst/script/print-impl.h"
namespace kaldi {
/// Converts lattice types if necessary, deleting its input.
template<class OrigWeightType>
CompactLattice* ConvertToCompactLattice(fst::VectorFst<OrigWeightType> *ifst) {
if (!ifst) return NULL;
CompactLattice *ofst = new CompactLattice();
ConvertLattice(*ifst, ofst);
delete ifst;
return ofst;
}
// This overrides the template if there is no type conversion going on
// (for efficiency).
template<>
CompactLattice* ConvertToCompactLattice(CompactLattice *ifst) {
return ifst;
}
/// Converts lattice types if necessary, deleting its input.
template<class OrigWeightType>
Lattice* ConvertToLattice(fst::VectorFst<OrigWeightType> *ifst) {
if (!ifst) return NULL;
Lattice *ofst = new Lattice();
ConvertLattice(*ifst, ofst);
delete ifst;
return ofst;
}
// This overrides the template if there is no type conversion going on
// (for efficiency).
template<>
Lattice* ConvertToLattice(Lattice *ifst) {
return ifst;
}
bool WriteCompactLattice(std::ostream &os, bool binary,
const CompactLattice &t) {
if (binary) {
fst::FstWriteOptions opts;
// Leave all the options default. Normally these lattices wouldn't have any
// osymbols/isymbols so no point directing it not to write them (who knows what
// we'd want to if we had them).
return t.Write(os, opts);
} else {
// Text-mode output. Note: we expect that t.InputSymbols() and
// t.OutputSymbols() would always return NULL. The corresponding input
// routine would not work if the FST actually had symbols attached.
// Write a newline after the key, so the first line of the FST appears
// on its own line.
os << '\n';
bool acceptor = true, write_one = false;
fst::FstPrinter<CompactLatticeArc> printer(t, t.InputSymbols(),
t.OutputSymbols(),
NULL, acceptor, write_one, "\t");
printer.Print(&os, "<unknown>");
if (os.fail())
KALDI_WARN << "Stream failure detected.";
// Write another newline as a terminating character. The read routine will
// detect this [this is a Kaldi mechanism, not somethig in the original
// OpenFst code].
os << '\n';
return os.good();
}
}
/// LatticeReader provides (static) functions for reading both Lattice
/// and CompactLattice, in text form.
class LatticeReader {
typedef LatticeArc Arc;
typedef LatticeWeight Weight;
typedef CompactLatticeArc CArc;
typedef CompactLatticeWeight CWeight;
typedef Arc::Label Label;
typedef Arc::StateId StateId;
public:
// everything is static in this class.
/** This function reads from the FST text format; it does not know in advance
whether it's a Lattice or CompactLattice in the stream so it tries to
read both formats until it becomes clear which is the correct one.
*/
static std::pair<Lattice*, CompactLattice*> ReadText(
std::istream &is) {
typedef std::pair<Lattice*, CompactLattice*> PairT;
using std::string;
using std::vector;
Lattice *fst = new Lattice();
CompactLattice *cfst = new CompactLattice();
string line;
size_t nline = 0;
string separator = FLAGS_fst_field_separator + "\r\n";
while (std::getline(is, line)) {
nline++;
vector<string> col;
// on Windows we'll write in text and read in binary mode.
SplitStringToVector(line, separator.c_str(), true, &col);
if (col.size() == 0) break; // Empty line is a signal to stop, in our
// archive format.
if (col.size() > 5) {
KALDI_WARN << "Reading lattice: bad line in FST: " << line;
delete fst;
delete cfst;
return PairT(static_cast<Lattice*>(NULL),
static_cast<CompactLattice*>(NULL));
}
StateId s;
if (!ConvertStringToInteger(col[0], &s)) {
KALDI_WARN << "FstCompiler: bad line in FST: " << line;
delete fst;
delete cfst;
return PairT(static_cast<Lattice*>(NULL),
static_cast<CompactLattice*>(NULL));
}
if (fst)
while (s >= fst->NumStates())
fst->AddState();
if (cfst)
while (s >= cfst->NumStates())
cfst->AddState();
if (nline == 1) {
if (fst) fst->SetStart(s);
if (cfst) cfst->SetStart(s);
}
if (fst) { // we still have fst; try to read that arc.
bool ok = true;
Arc arc;
Weight w;
StateId d = s;
switch (col.size()) {
case 1 :
fst->SetFinal(s, Weight::One());
break;
case 2:
if (!StrToWeight(col[1], true, &w)) ok = false;
else fst->SetFinal(s, w);
break;
case 3: // 3 columns not ok for Lattice format; it's not an acceptor.
ok = false;
break;
case 4:
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel) &&
ConvertStringToInteger(col[3], &arc.olabel);
if (ok) {
d = arc.nextstate;
arc.weight = Weight::One();
fst->AddArc(s, arc);
}
break;
case 5:
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel) &&
ConvertStringToInteger(col[3], &arc.olabel) &&
StrToWeight(col[4], false, &arc.weight);
if (ok) {
d = arc.nextstate;
fst->AddArc(s, arc);
}
break;
default:
ok = false;
}
while (d >= fst->NumStates())
fst->AddState();
if (!ok) {
delete fst;
fst = NULL;
}
}
if (cfst) {
bool ok = true;
CArc arc;
CWeight w;
StateId d = s;
switch (col.size()) {
case 1 :
cfst->SetFinal(s, CWeight::One());
break;
case 2:
if (!StrToCWeight(col[1], true, &w)) ok = false;
else cfst->SetFinal(s, w);
break;
case 3: // compact-lattice is acceptor format: state, next-state, label.
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel);
if (ok) {
d = arc.nextstate;
arc.olabel = arc.ilabel;
arc.weight = CWeight::One();
cfst->AddArc(s, arc);
}
break;
case 4:
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel) &&
StrToCWeight(col[3], false, &arc.weight);
if (ok) {
d = arc.nextstate;
arc.olabel = arc.ilabel;
cfst->AddArc(s, arc);
}
break;
case 5: default:
ok = false;
}
while (d >= cfst->NumStates())
cfst->AddState();
if (!ok) {
delete cfst;
cfst = NULL;
}
}
if (!fst && !cfst) {
KALDI_WARN << "Bad line in lattice text format: " << line;
// read until we get an empty line, so at least we
// have a chance to read the next one (although this might
// be a bit futile since the calling code will get unhappy
// about failing to read this one.
while (std::getline(is, line)) {
SplitStringToVector(line, separator.c_str(), true, &col);
if (col.empty()) break;
}
return PairT(static_cast<Lattice*>(NULL),
static_cast<CompactLattice*>(NULL));
}
}
return PairT(fst, cfst);
}
static bool StrToWeight(const std::string &s, bool allow_zero, Weight *w) {
std::istringstream strm(s);
strm >> *w;
if (!strm || (!allow_zero && *w == Weight::Zero())) {
return false;
}
return true;
}
static bool StrToCWeight(const std::string &s, bool allow_zero, CWeight *w) {
std::istringstream strm(s);
strm >> *w;
if (!strm || (!allow_zero && *w == CWeight::Zero())) {
return false;
}
return true;
}
};
CompactLattice *ReadCompactLatticeText(std::istream &is) {
std::pair<Lattice*, CompactLattice*> lat_pair = LatticeReader::ReadText(is);
if (lat_pair.second != NULL) {
delete lat_pair.first;
return lat_pair.second;
} else if (lat_pair.first != NULL) {
// note: ConvertToCompactLattice frees its input.
return ConvertToCompactLattice(lat_pair.first);
} else {
return NULL;
}
}
Lattice *ReadLatticeText(std::istream &is) {
std::pair<Lattice*, CompactLattice*> lat_pair = LatticeReader::ReadText(is);
if (lat_pair.first != NULL) {
delete lat_pair.second;
return lat_pair.first;
} else if (lat_pair.second != NULL) {
// note: ConvertToLattice frees its input.
return ConvertToLattice(lat_pair.second);
} else {
return NULL;
}
}
bool ReadCompactLattice(std::istream &is, bool binary,
CompactLattice **clat) {
KALDI_ASSERT(*clat == NULL);
if (binary) {
fst::FstHeader hdr;
if (!hdr.Read(is, "<unknown>")) {
KALDI_WARN << "Reading compact lattice: error reading FST header.";
return false;
}
if (hdr.FstType() != "vector") {
KALDI_WARN << "Reading compact lattice: unsupported FST type: "
<< hdr.FstType();
return false;
}
fst::FstReadOptions ropts("<unspecified>",
&hdr);
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<float>, int32> T1;
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<double>, int32> T2;
typedef fst::LatticeWeightTpl<float> T3;
typedef fst::LatticeWeightTpl<double> T4;
typedef fst::VectorFst<fst::ArcTpl<T1> > F1;
typedef fst::VectorFst<fst::ArcTpl<T2> > F2;
typedef fst::VectorFst<fst::ArcTpl<T3> > F3;
typedef fst::VectorFst<fst::ArcTpl<T4> > F4;
CompactLattice *ans = NULL;
if (hdr.ArcType() == T1::Type()) {
ans = ConvertToCompactLattice(F1::Read(is, ropts));
} else if (hdr.ArcType() == T2::Type()) {
ans = ConvertToCompactLattice(F2::Read(is, ropts));
} else if (hdr.ArcType() == T3::Type()) {
ans = ConvertToCompactLattice(F3::Read(is, ropts));
} else if (hdr.ArcType() == T4::Type()) {
ans = ConvertToCompactLattice(F4::Read(is, ropts));
} else {
KALDI_WARN << "FST with arc type " << hdr.ArcType()
<< " cannot be converted to CompactLattice.\n";
return false;
}
if (ans == NULL) {
KALDI_WARN << "Error reading compact lattice (after reading header).";
return false;
}
*clat = ans;
return true;
} else {
// The next line would normally consume the \r on Windows, plus any
// extra spaces that might have got in there somehow.
while (std::isspace(is.peek()) && is.peek() != '\n') is.get();
if (is.peek() == '\n') is.get(); // consume the newline.
else { // saw spaces but no newline.. this is not expected.
KALDI_WARN << "Reading compact lattice: unexpected sequence of spaces "
<< " at file position " << is.tellg();
return false;
}
*clat = ReadCompactLatticeText(is); // that routine will warn on error.
return (*clat != NULL);
}
}
bool CompactLatticeHolder::Read(std::istream &is) {
Clear(); // in case anything currently stored.
int c = is.peek();
if (c == -1) {
KALDI_WARN << "End of stream detected reading CompactLattice.";
return false;
} else if (isspace(c)) { // The text form of the lattice begins
// with space (normally, '\n'), so this means it's text (the binary form
// cannot begin with space because it starts with the FST Type() which is not
// space).
return ReadCompactLattice(is, false, &t_);
} else if (c != 214) { // 214 is first char of FST magic number,
// on little-endian machines which is all we support (\326 octal)
KALDI_WARN << "Reading compact lattice: does not appear to be an FST "
<< " [non-space but no magic number detected], file pos is "
<< is.tellg();
return false;
} else {
return ReadCompactLattice(is, true, &t_);
}
}
bool WriteLattice(std::ostream &os, bool binary, const Lattice &t) {
if (binary) {
fst::FstWriteOptions opts;
// Leave all the options default. Normally these lattices wouldn't have any
// osymbols/isymbols so no point directing it not to write them (who knows what
// we'd want to do if we had them).
return t.Write(os, opts);
} else {
// Text-mode output. Note: we expect that t.InputSymbols() and
// t.OutputSymbols() would always return NULL. The corresponding input
// routine would not work if the FST actually had symbols attached.
// Write a newline after the key, so the first line of the FST appears
// on its own line.
os << '\n';
bool acceptor = false, write_one = false;
fst::FstPrinter<LatticeArc> printer(t, t.InputSymbols(),
t.OutputSymbols(),
NULL, acceptor, write_one, "\t");
printer.Print(&os, "<unknown>");
if (os.fail())
KALDI_WARN << "Stream failure detected.";
// Write another newline as a terminating character. The read routine will
// detect this [this is a Kaldi mechanism, not somethig in the original
// OpenFst code].
os << '\n';
return os.good();
}
}
bool ReadLattice(std::istream &is, bool binary,
Lattice **lat) {
KALDI_ASSERT(*lat == NULL);
if (binary) {
fst::FstHeader hdr;
if (!hdr.Read(is, "<unknown>")) {
KALDI_WARN << "Reading lattice: error reading FST header.";
return false;
}
if (hdr.FstType() != "vector") {
KALDI_WARN << "Reading lattice: unsupported FST type: "
<< hdr.FstType();
return false;
}
fst::FstReadOptions ropts("<unspecified>",
&hdr);
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<float>, int32> T1;
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<double>, int32> T2;
typedef fst::LatticeWeightTpl<float> T3;
typedef fst::LatticeWeightTpl<double> T4;
typedef fst::VectorFst<fst::ArcTpl<T1> > F1;
typedef fst::VectorFst<fst::ArcTpl<T2> > F2;
typedef fst::VectorFst<fst::ArcTpl<T3> > F3;
typedef fst::VectorFst<fst::ArcTpl<T4> > F4;
Lattice *ans = NULL;
if (hdr.ArcType() == T1::Type()) {
ans = ConvertToLattice(F1::Read(is, ropts));
} else if (hdr.ArcType() == T2::Type()) {
ans = ConvertToLattice(F2::Read(is, ropts));
} else if (hdr.ArcType() == T3::Type()) {
ans = ConvertToLattice(F3::Read(is, ropts));
} else if (hdr.ArcType() == T4::Type()) {
ans = ConvertToLattice(F4::Read(is, ropts));
} else {
KALDI_WARN << "FST with arc type " << hdr.ArcType()
<< " cannot be converted to Lattice.\n";
return false;
}
if (ans == NULL) {
KALDI_WARN << "Error reading lattice (after reading header).";
return false;
}
*lat = ans;
return true;
} else {
// The next line would normally consume the \r on Windows, plus any
// extra spaces that might have got in there somehow.
while (std::isspace(is.peek()) && is.peek() != '\n') is.get();
if (is.peek() == '\n') is.get(); // consume the newline.
else { // saw spaces but no newline.. this is not expected.
KALDI_WARN << "Reading compact lattice: unexpected sequence of spaces "
<< " at file position " << is.tellg();
return false;
}
*lat = ReadLatticeText(is); // that routine will warn on error.
return (*lat != NULL);
}
}
/* Since we don't write the binary headers for this type of holder,
we use a different method to work out whether we're in binary mode.
*/
bool LatticeHolder::Read(std::istream &is) {
Clear(); // in case anything currently stored.
int c = is.peek();
if (c == -1) {
KALDI_WARN << "End of stream detected reading Lattice.";
return false;
} else if (isspace(c)) { // The text form of the lattice begins
// with space (normally, '\n'), so this means it's text (the binary form
// cannot begin with space because it starts with the FST Type() which is not
// space).
return ReadLattice(is, false, &t_);
} else if (c != 214) { // 214 is first char of FST magic number,
// on little-endian machines which is all we support (\326 octal)
KALDI_WARN << "Reading compact lattice: does not appear to be an FST "
<< " [non-space but no magic number detected], file pos is "
<< is.tellg();
return false;
} else {
return ReadLattice(is, true, &t_);
}
}
} // end namespace kaldi

View File

@@ -0,0 +1,156 @@
// lat/kaldi-lattice.h
// Copyright 2009-2011 Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_LAT_KALDI_LATTICE_H_
#define KALDI_LAT_KALDI_LATTICE_H_
#include "fstext/fstext-lib.h"
#include "base/kaldi-common.h"
// #include "util/common-utils.h"
namespace kaldi {
// will import some things above...
typedef fst::LatticeWeightTpl<BaseFloat> LatticeWeight;
// careful: kaldi::int32 is not always the same C type as fst::int32
typedef fst::CompactLatticeWeightTpl<LatticeWeight, int32> CompactLatticeWeight;
typedef fst::CompactLatticeWeightCommonDivisorTpl<LatticeWeight, int32>
CompactLatticeWeightCommonDivisor;
typedef fst::ArcTpl<LatticeWeight> LatticeArc;
typedef fst::ArcTpl<CompactLatticeWeight> CompactLatticeArc;
typedef fst::VectorFst<LatticeArc> Lattice;
typedef fst::VectorFst<CompactLatticeArc> CompactLattice;
// The following functions for writing and reading lattices in binary or text
// form are provided here in case you need to include lattices in larger,
// Kaldi-type objects with their own Read and Write functions. Caution: these
// functions return false on stream failure rather than throwing an exception as
// most similar Kaldi functions would do.
bool WriteCompactLattice(std::ostream &os, bool binary,
const CompactLattice &clat);
bool WriteLattice(std::ostream &os, bool binary,
const Lattice &lat);
// the following function requires that *clat be
// NULL when called.
bool ReadCompactLattice(std::istream &is, bool binary,
CompactLattice **clat);
// the following function requires that *lat be
// NULL when called.
bool ReadLattice(std::istream &is, bool binary,
Lattice **lat);
class CompactLatticeHolder {
public:
typedef CompactLattice T;
CompactLatticeHolder() { t_ = NULL; }
static bool Write(std::ostream &os, bool binary, const T &t) {
// Note: we don't include the binary-mode header when writing
// this object to disk; this ensures that if we write to single
// files, the result can be read by OpenFst.
return WriteCompactLattice(os, binary, t);
}
bool Read(std::istream &is);
static bool IsReadInBinary() { return true; }
T &Value() {
KALDI_ASSERT(t_ != NULL && "Called Value() on empty CompactLatticeHolder");
return *t_;
}
void Clear() { delete t_; t_ = NULL; }
void Swap(CompactLatticeHolder *other) {
std::swap(t_, other->t_);
}
bool ExtractRange(const CompactLatticeHolder &other, const std::string &range) {
KALDI_ERR << "ExtractRange is not defined for this type of holder.";
return false;
}
~CompactLatticeHolder() { Clear(); }
private:
T *t_;
};
class LatticeHolder {
public:
typedef Lattice T;
LatticeHolder() { t_ = NULL; }
static bool Write(std::ostream &os, bool binary, const T &t) {
// Note: we don't include the binary-mode header when writing
// this object to disk; this ensures that if we write to single
// files, the result can be read by OpenFst.
return WriteLattice(os, binary, t);
}
bool Read(std::istream &is);
static bool IsReadInBinary() { return true; }
T &Value() {
KALDI_ASSERT(t_ != NULL && "Called Value() on empty LatticeHolder");
return *t_;
}
void Clear() { delete t_; t_ = NULL; }
void Swap(LatticeHolder *other) {
std::swap(t_, other->t_);
}
bool ExtractRange(const LatticeHolder &other, const std::string &range) {
KALDI_ERR << "ExtractRange is not defined for this type of holder.";
return false;
}
~LatticeHolder() { Clear(); }
private:
T *t_;
};
// typedef TableWriter<LatticeHolder> LatticeWriter;
// typedef SequentialTableReader<LatticeHolder> SequentialLatticeReader;
// typedef RandomAccessTableReader<LatticeHolder> RandomAccessLatticeReader;
//
// typedef TableWriter<CompactLatticeHolder> CompactLatticeWriter;
// typedef SequentialTableReader<CompactLatticeHolder> SequentialCompactLatticeReader;
// typedef RandomAccessTableReader<CompactLatticeHolder> RandomAccessCompactLatticeReader;
} // namespace kaldi
#endif // KALDI_LAT_KALDI_LATTICE_H_

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,455 @@
// lat/lattice-functions.h
// Copyright 2009-2012 Saarland University (author: Arnab Ghoshal)
// 2012-2013 Johns Hopkins University (Author: Daniel Povey);
// Bagher BabaAli
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_LAT_LATTICE_FUNCTIONS_H_
#define KALDI_LAT_LATTICE_FUNCTIONS_H_
#include <vector>
#include <map>
#include "base/kaldi-common.h"
// #include "hmm/posterior.h"
#include "fstext/fstext-lib.h"
// #include "hmm/transition-model.h"
#include "lat/kaldi-lattice.h"
// #include "itf/decodable-itf.h"
namespace kaldi {
// /**
// This function extracts the per-frame log likelihoods from a linear
// lattice (which we refer to as an 'nbest' lattice elsewhere in Kaldi code).
// The dimension of *per_frame_loglikes will be set to the
// number of input symbols in 'nbest'. The elements of
// '*per_frame_loglikes' will be set to the .Value2() elements of the lattice
// weights, which represent the acoustic costs; you may want to scale this
// vector afterward by -1/acoustic_scale to get the original loglikes.
// If there are acoustic costs on input-epsilon arcs or the final-prob in 'nbest'
// (and this should not normally be the case in situations where it makes
// sense to call this function), they will be included to the cost of the
// preceding input symbol, or the following input symbol for input-epsilons
// encountered prior to any input symbol. If 'nbest' has no input symbols,
// 'per_frame_loglikes' will be set to the empty vector.
// **/
// void GetPerFrameAcousticCosts(const Lattice &nbest,
// Vector<BaseFloat> *per_frame_loglikes);
//
// /// This function iterates over the states of a topologically sorted lattice and
// /// counts the time instance corresponding to each state. The times are returned
// /// in a vector of integers 'times' which is resized to have a size equal to the
// /// number of states in the lattice. The function also returns the maximum time
// /// in the lattice (this will equal the number of frames in the file).
// int32 LatticeStateTimes(const Lattice &lat, std::vector<int32> *times);
//
// /// As LatticeStateTimes, but in the CompactLattice format. Note: must
// /// be topologically sorted. Returns length of the utterance in frames, which
// /// might not be the same as the maximum time in the lattice, due to frames
// /// in the final-prob.
// int32 CompactLatticeStateTimes(const CompactLattice &clat,
// std::vector<int32> *times);
//
// /// This function does the forward-backward over lattices and computes the
// /// posterior probabilities of the arcs. It returns the total log-probability
// /// of the lattice. The Posterior quantities contain pairs of (transition-id, weight)
// /// on each frame.
// /// If the pointer "acoustic_like_sum" is provided, this value is set to
// /// the sum over the arcs, of the posterior of the arc times the
// /// acoustic likelihood [i.e. negated acoustic score] on that link.
// /// This is used in combination with other quantities to work out
// /// the objective function in MMI discriminative training.
// BaseFloat LatticeForwardBackward(const Lattice &lat,
// Posterior *arc_post,
// double *acoustic_like_sum = NULL);
//
// // This function is something similar to LatticeForwardBackward(), but it is on
// // the CompactLattice lattice format. Also we only need the alpha in the forward
// // path, not the posteriors.
// bool ComputeCompactLatticeAlphas(const CompactLattice &lat,
// std::vector<double> *alpha);
//
// // A sibling of the function CompactLatticeAlphas()... We compute the beta from
// // the backward path here.
// bool ComputeCompactLatticeBetas(const CompactLattice &lat,
// std::vector<double> *beta);
//
//
// // Computes (normal or Viterbi) alphas and betas; returns (total-prob, or
// // best-path negated cost) Note: in either case, the alphas and betas are
// // negated costs. Requires that lat be topologically sorted. This code
// // will work for either CompactLattice or Latice.
// template<typename LatticeType>
// double ComputeLatticeAlphasAndBetas(const LatticeType &lat,
// bool viterbi,
// std::vector<double> *alpha,
// std::vector<double> *beta);
//
//
// /// Topologically sort the compact lattice if not already topologically sorted.
// /// Will crash if the lattice cannot be topologically sorted.
// void TopSortCompactLatticeIfNeeded(CompactLattice *clat);
//
//
// /// Topologically sort the lattice if not already topologically sorted.
// /// Will crash if lattice cannot be topologically sorted.
// void TopSortLatticeIfNeeded(Lattice *clat);
//
// /// Returns the depth of the lattice, defined as the average number of arcs (or
// /// final-prob strings) crossing any given frame. Returns 1 for empty lattices.
// /// Requires that clat is topologically sorted!
// BaseFloat CompactLatticeDepth(const CompactLattice &clat,
// int32 *num_frames = NULL);
//
// /// This function returns, for each frame, the number of arcs crossing that
// /// frame.
// void CompactLatticeDepthPerFrame(const CompactLattice &clat,
// std::vector<int32> *depth_per_frame);
//
//
// /// This function limits the depth of the lattice, per frame: that means, it
// /// does not allow more than a specified number of arcs active on any given
// /// frame. This can be used to reduce the size of the "very deep" portions of
// /// the lattice.
// void CompactLatticeLimitDepth(int32 max_arcs_per_frame,
// CompactLattice *clat);
//
//
// /// Given a lattice, and a transition model to map pdf-ids to phones,
// /// outputs for each frame the set of phones active on that frame. If
// /// sil_phones (which must be sorted and uniq) is nonempty, it excludes
// /// phones in this list.
// void LatticeActivePhones(const Lattice &lat, const TransitionModel &trans,
// const std::vector<int32> &sil_phones,
// std::vector<std::set<int32> > *active_phones);
//
// /// Given a lattice, and a transition model to map pdf-ids to phones,
// /// replace the output symbols (presumably words), with phones; we
// /// use the TransitionModel to work out the phone sequence. Note
// /// that the phone labels are not exactly aligned with the phone
// /// boundaries. We put a phone label to coincide with any transition
// /// to the final, nonemitting state of a phone (this state always exists,
// /// we ensure this in HmmTopology::Check()). This would be the last
// /// transition-id in the phone if reordering is not done (but typically
// /// we do reorder).
// /// Also see PhoneAlignLattice, in phone-align-lattice.h.
// void ConvertLatticeToPhones(const TransitionModel &trans_model,
// Lattice *lat);
/// Prunes a lattice or compact lattice. Returns true on success, false if
/// there was some kind of failure.
template<class LatticeType>
bool PruneLattice(BaseFloat beam, LatticeType *lat);
//
// /// Given a lattice, and a transition model to map pdf-ids to phones,
// /// replace the sequences of transition-ids with sequences of phones.
// /// Note that this is different from ConvertLatticeToPhones, in that
// /// we replace the transition-ids not the words.
// void ConvertCompactLatticeToPhones(const TransitionModel &trans_model,
// CompactLattice *clat);
//
// /// Boosts LM probabilities by b * [number of frame errors]; equivalently, adds
// /// -b*[number of frame errors] to the graph-component of the cost of each arc/path.
// /// There is a frame error if a particular transition-id on a particular frame
// /// corresponds to a phone not matching transcription's alignment for that frame.
// /// This is used in "margin-inspired" discriminative training, esp. Boosted MMI.
// /// The TransitionModel is used to map transition-ids in the lattice
// /// input-side to phones; the phones appearing in
// /// "silence_phones" are treated specially in that we replace the frame error f
// /// (either zero or 1) for a frame, with the minimum of f or max_silence_error.
// /// For the normal recipe, max_silence_error would be zero.
// /// Returns true on success, false if there was some kind of mismatch.
// /// At input, silence_phones must be sorted and unique.
// bool LatticeBoost(const TransitionModel &trans,
// const std::vector<int32> &alignment,
// const std::vector<int32> &silence_phones,
// BaseFloat b,
// BaseFloat max_silence_error,
// Lattice *lat);
//
//
// /**
// This function implements either the MPFE (minimum phone frame error) or SMBR
// (state-level minimum bayes risk) forward-backward, depending on whether
// "criterion" is "mpfe" or "smbr". It returns the MPFE
// criterion of SMBR criterion for this utterance, and outputs the posteriors (which
// may be positive or negative) into "post".
//
// @param [in] trans The transition model. Used to map the
// transition-ids to phones or pdfs.
// @param [in] silence_phones A list of integer ids of silence phones. The
// silence frames i.e. the frames where num_ali
// corresponds to a silence phones are treated specially.
// The behavior is determined by 'one_silence_class'
// being false (traditional behavior) or true.
// Usually in our setup, several phones including
// the silence, vocalized noise, non-spoken noise
// and unk are treated as "silence phones"
// @param [in] lat The denominator lattice
// @param [in] num_ali The numerator alignment
// @param [in] criterion The objective function. Must be "mpfe" or "smbr"
// for MPFE (minimum phone frame error) or sMBR
// (state minimum bayes risk) training.
// @param [in] one_silence_class Determines how the silence frames are treated.
// Setting this to false gives the old traditional behavior,
// where the silence frames (according to num_ali) are
// treated as incorrect. However, this means that the
// insertions are not penalized by the objective.
// Setting this to true gives the new behaviour, where we
// treat silence as any other phone, except that all pdfs
// of silence phones are collapsed into a single class for
// the frame-error computation. This can possible reduce
// the insertions in the trained model. This is closer to
// the WER metric that we actually care about, since WER is
// generally computed after filtering out noises, but
// does penalize insertions.
// @param [out] post The "MBR posteriors" i.e. derivatives w.r.t to the
// pseudo log-likelihoods of states at each frame.
// */
// BaseFloat LatticeForwardBackwardMpeVariants(
// const TransitionModel &trans,
// const std::vector<int32> &silence_phones,
// const Lattice &lat,
// const std::vector<int32> &num_ali,
// std::string criterion,
// bool one_silence_class,
// Posterior *post);
//
// /**
// This function can be used to compute posteriors for MMI, with a positive contribution
// for the numerator and a negative one for the denominator. This function is not actually
// used in our normal MMI training recipes, where it's instead done using various command
// line programs that each do a part of the job. This function was written for use in
// neural-net MMI training.
//
// @param [in] trans The transition model. Used to map the
// transition-ids to phones or pdfs.
// @param [in] lat The denominator lattice
// @param [in] num_ali The numerator alignment
// @param [in] drop_frames If "drop_frames" is true, it will not compute any
// posteriors on frames where the num and den have disjoint
// pdf-ids.
// @param [in] convert_to_pdf_ids If "convert_to_pdfs_ids" is true, it will
// convert the output to be at the level of pdf-ids, not
// transition-ids.
// @param [in] cancel If "cancel" is true, it will cancel out any positive and
// negative parts from the same transition-id (or pdf-id,
// if convert_to_pdf_ids == true).
// @param [out] arc_post The output MMI posteriors of transition-ids (or
// pdf-ids if convert_to_pdf_ids == true) at each frame
// i.e. the difference between the numerator
// and denominator posteriors.
//
// It returns the forward-backward likelihood of the lattice. */
// BaseFloat LatticeForwardBackwardMmi(
// const TransitionModel &trans,
// const Lattice &lat,
// const std::vector<int32> &num_ali,
// bool drop_frames,
// bool convert_to_pdf_ids,
// bool cancel,
// Posterior *arc_post);
//
//
// /// This function takes a CompactLattice that should only contain a single
// /// linear sequence (e.g. derived from lattice-1best), and that should have been
// /// processed so that the arcs in the CompactLattice align correctly with the
// /// word boundaries (e.g. by lattice-align-words). It outputs 3 vectors of the
// /// same size, which give, for each word in the lattice (in sequence), the word
// /// label and the begin time and length in frames. This is done even for zero
// /// (epsilon) words, generally corresponding to optional silence-- if you don't
// /// want them, just ignore them in the output.
// /// This function will print a warning and return false, if the lattice
// /// did not have the correct format (e.g. if it is empty or it is not
// /// linear).
// bool CompactLatticeToWordAlignment(const CompactLattice &clat,
// std::vector<int32> *words,
// std::vector<int32> *begin_times,
// std::vector<int32> *lengths);
//
// /// This function takes a CompactLattice that should only contain a single
// /// linear sequence (e.g. derived from lattice-1best), and that should have been
// /// processed so that the arcs in the CompactLattice align correctly with the
// /// word boundaries (e.g. by lattice-align-words). It outputs 4 vectors of the
// /// same size, which give, for each word in the lattice (in sequence), the word
// /// label, the begin time and length in frames, and the pronunciation (sequence
// /// of phones). This is done even for zero words, corresponding to optional
// /// silences -- if you don't want them, just ignore them in the output.
// /// This function will print a warning and return false, if the lattice
// /// did not have the correct format (e.g. if it is empty or it is not
// /// linear).
// bool CompactLatticeToWordProns(
// const TransitionModel &tmodel,
// const CompactLattice &clat,
// std::vector<int32> *words,
// std::vector<int32> *begin_times,
// std::vector<int32> *lengths,
// std::vector<std::vector<int32> > *prons,
// std::vector<std::vector<int32> > *phone_lengths);
//
//
// /// A form of the shortest-path/best-path algorithm that's specially coded for
// /// CompactLattice. Requires that clat be acyclic.
// void CompactLatticeShortestPath(const CompactLattice &clat,
// CompactLattice *shortest_path);
//
// /// This function expands a CompactLattice to ensure high-probability paths
// /// have unique histories. Arcs with posteriors larger than epsilon get splitted.
// void ExpandCompactLattice(const CompactLattice &clat,
// double epsilon,
// CompactLattice *expand_clat);
//
// /// For each state, compute forward and backward best (viterbi) costs and its
// /// traceback states (for generating best paths later). The forward best cost
// /// for a state is the cost of the best path from the start state to the state.
// /// The traceback state of this state is its predecessor state in the best path.
// /// The backward best cost for a state is the cost of the best path from the
// /// state to a final one. Its traceback state is the successor state in the best
// /// path in the forward direction.
// /// Note: final weights of states are in backward_best_cost_and_pred.
// /// Requires the input CompactLattice clat be acyclic.
// typedef std::vector<std::pair<double,
// CompactLatticeArc::StateId> > CostTraceType;
// void CompactLatticeBestCostsAndTracebacks(
// const CompactLattice &clat,
// CostTraceType *forward_best_cost_and_pred,
// CostTraceType *backward_best_cost_and_pred);
//
// /// This function adds estimated neural language model scores of words in a
// /// minimal list of hypotheses that covers a lattice, to the graph scores on the
// /// arcs. The list of hypotheses are generated by latbin/lattice-path-cover.
// typedef unordered_map<std::pair<int32, int32>, double, PairHasher<int32> > MapT;
// void AddNnlmScoreToCompactLattice(const MapT &nnlm_scores,
// CompactLattice *clat);
//
// /// This function add the word insertion penalty to graph score of each word
// /// in the compact lattice
// void AddWordInsPenToCompactLattice(BaseFloat word_ins_penalty,
// CompactLattice *clat);
//
// /// This function *adds* the negated scores obtained from the Decodable object,
// /// to the acoustic scores on the arcs. If you want to replace them, you should
// /// use ScaleCompactLattice to first set the acoustic scores to zero. Returns
// /// true on success, false on error (typically some kind of mismatched inputs).
// bool RescoreCompactLattice(DecodableInterface *decodable,
// CompactLattice *clat);
//
//
// /// This function returns the number of words in the longest sentence in a
// /// CompactLattice (i.e. the the maximum of any path, of the count of
// /// olabels on that path).
// int32 LongestSentenceLength(const Lattice &lat);
//
// /// This function returns the number of words in the longest sentence in a
// /// CompactLattice, i.e. the the maximum of any path, of the count of
// /// labels on that path... note, in CompactLattice, the ilabels and olabels
// /// are identical because it is an acceptor.
// int32 LongestSentenceLength(const CompactLattice &lat);
//
//
// /// This function is like RescoreCompactLattice, but it is modified to avoid
// /// computing probabilities on most frames where all the pdf-ids are the same.
// /// (it needs the transition-model to work out whether two transition-ids map to
// /// the same pdf-id, and it assumes that the lattice has transition-ids on it).
// /// The naive thing would be to just set all probabilities to zero on frames
// /// where all the pdf-ids are the same (because this value won't affect the
// /// lattice posterior). But this would become confusing when we compute
// /// corpus-level diagnostics such as the MMI objective function. Instead,
// /// imagine speedup_factor = 100 (it must be >= 1.0)... with probability (1.0 /
// /// speedup_factor) we compute those likelihoods and multiply them by
// /// speedup_factor; otherwise we set them to zero. This gives the right
// /// expected probability so our corpus-level diagnostics will be about right.
// bool RescoreCompactLatticeSpeedup(
// const TransitionModel &tmodel,
// BaseFloat speedup_factor,
// DecodableInterface *decodable,
// CompactLattice *clat);
//
//
// /// This function *adds* the negated scores obtained from the Decodable object,
// /// to the acoustic scores on the arcs. If you want to replace them, you should
// /// use ScaleCompactLattice to first set the acoustic scores to zero. Returns
// /// true on success, false on error (e.g. some kind of mismatched inputs).
// /// The input labels, if nonzero, are interpreted as transition-ids or whatever
// /// other index the Decodable object expects.
// bool RescoreLattice(DecodableInterface *decodable,
// Lattice *lat);
//
// /// This function Composes a CompactLattice format lattice with a
// /// DeterministicOnDemandFst<fst::StdFst> format fst, and outputs another
// /// CompactLattice format lattice. The first element (the one that corresponds
// /// to LM weight) in CompactLatticeWeight is used for composition.
// ///
// /// Note that the DeterministicOnDemandFst interface is not "const", therefore
// /// we cannot use "const" for <det_fst>.
// void ComposeCompactLatticeDeterministic(
// const CompactLattice& clat,
// fst::DeterministicOnDemandFst<fst::StdArc>* det_fst,
// CompactLattice* composed_clat);
//
// /// This function computes the mapping from the pair
// /// (frame-index, transition-id) to the pair
// /// (sum-of-acoustic-scores, num-of-occurences) over all occurences of the
// /// transition-id in that frame.
// /// frame-index in the lattice.
// /// This function is useful for retaining the acoustic scores in a
// /// non-compact lattice after a process like determinization where the
// /// frame-level acoustic scores are typically lost.
// /// The function ReplaceAcousticScoresFromMap is used to restore the
// /// acoustic scores computed by this function.
// ///
// /// @param [in] lat Input lattice. Expected to be top-sorted. Otherwise the
// /// function will crash.
// /// @param [out] acoustic_scores
// /// Pointer to a map from the pair (frame-index,
// /// transition-id) to a pair (sum-of-acoustic-scores,
// /// num-of-occurences).
// /// Usually the acoustic scores for a pdf-id (and hence
// /// transition-id) on a frame will be the same for all the
// /// occurences of the pdf-id in that frame.
// /// But if not, we will take the average of the acoustic
// /// scores. Hence, we store both the sum-of-acoustic-scores
// /// and the num-of-occurences of the transition-id in that
// /// frame.
// void ComputeAcousticScoresMap(
// const Lattice &lat,
// unordered_map<std::pair<int32, int32>, std::pair<BaseFloat, int32>,
// PairHasher<int32> > *acoustic_scores);
//
// /// This function restores acoustic scores computed using the function
// /// ComputeAcousticScoresMap into the lattice.
// ///
// /// @param [in] acoustic_scores
// /// A map from the pair (frame-index, transition-id) to a
// /// pair (sum-of-acoustic-scores, num-of-occurences) of
// /// the occurences of the transition-id in that frame.
// /// See the comments for ComputeAcousticScoresMap for
// /// details.
// /// @param [out] lat Pointer to the output lattice.
// void ReplaceAcousticScoresFromMap(
// const unordered_map<std::pair<int32, int32>, std::pair<BaseFloat, int32>,
// PairHasher<int32> > &acoustic_scores,
// Lattice *lat);
} // namespace kaldi
#endif // KALDI_LAT_LATTICE_FUNCTIONS_H_