tpu
This commit is contained in:
@@ -20,7 +20,7 @@ use_amp: true # whether to use automatic mixed precision (AMP) for training
|
||||
|
||||
# TPU and distributed training settings
|
||||
use_tpu: true # whether to use TPU for training (set to true for TPU)
|
||||
num_tpu_cores: 8 # number of TPU cores to use (typically 8 for v3-8 or v4-8)
|
||||
num_tpu_cores: 8 # number of TPU cores to use (full TPU v3-8)
|
||||
gradient_accumulation_steps: 1 # number of gradient accumulation steps for distributed training
|
||||
|
||||
output_dir: trained_models/baseline_rnn # directory to save the trained model and logs
|
||||
|
@@ -183,34 +183,14 @@ class BrainToTextDecoder_Trainer:
|
||||
random_seed = self.args['dataset']['seed'],
|
||||
feature_subset = feature_subset
|
||||
)
|
||||
# Use TPU-optimized dataloader settings if TPU is enabled
|
||||
num_workers = self.args['dataset']['dataloader_num_workers'] if self.args.get('use_tpu', False) else self.args['dataset']['num_dataloader_workers']
|
||||
|
||||
# For TPU environments, we need to be more careful about DataLoader configuration
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
|
||||
if use_tpu:
|
||||
# For TPU, create a custom DataLoader that properly handles our batch-returning Dataset
|
||||
# TPU requires specific DataLoader configuration to avoid batch_sampler issues
|
||||
self.train_loader = DataLoader(
|
||||
self.train_dataset,
|
||||
batch_size = None, # None because our Dataset returns batches
|
||||
sampler = None, # Disable sampler to avoid batch_sampler conflicts
|
||||
batch_sampler = None, # Explicitly set to None
|
||||
shuffle = False, # Can't shuffle with custom batching
|
||||
num_workers = num_workers,
|
||||
pin_memory = False, # TPU doesn't support pin_memory
|
||||
collate_fn = lambda x: x if isinstance(x, dict) else x[0] # Handle both dict and list formats
|
||||
)
|
||||
else:
|
||||
# Standard GPU/CPU configuration
|
||||
self.train_loader = DataLoader(
|
||||
self.train_dataset,
|
||||
batch_size = None, # Dataset.__getitem__() already returns batches
|
||||
shuffle = self.args['dataset']['loader_shuffle'],
|
||||
num_workers = num_workers,
|
||||
pin_memory = True
|
||||
)
|
||||
# Standard DataLoader configuration - let Accelerator handle device-specific optimizations
|
||||
self.train_loader = DataLoader(
|
||||
self.train_dataset,
|
||||
batch_size = None, # Dataset.__getitem__() already returns batches
|
||||
shuffle = self.args['dataset']['loader_shuffle'],
|
||||
num_workers = self.args['dataset']['num_dataloader_workers'],
|
||||
pin_memory = True
|
||||
)
|
||||
|
||||
# val dataset and dataloader
|
||||
self.val_dataset = BrainToTextDataset(
|
||||
@@ -223,27 +203,14 @@ class BrainToTextDecoder_Trainer:
|
||||
random_seed = self.args['dataset']['seed'],
|
||||
feature_subset = feature_subset
|
||||
)
|
||||
if use_tpu:
|
||||
# For TPU, create a custom DataLoader that properly handles our batch-returning Dataset
|
||||
self.val_loader = DataLoader(
|
||||
self.val_dataset,
|
||||
batch_size = None, # None because our Dataset returns batches
|
||||
sampler = None, # Disable sampler to avoid batch_sampler conflicts
|
||||
batch_sampler = None, # Explicitly set to None
|
||||
shuffle = False,
|
||||
num_workers = 0, # Keep validation dataloader single-threaded for consistency
|
||||
pin_memory = False, # TPU doesn't support pin_memory
|
||||
collate_fn = lambda x: x if isinstance(x, dict) else x[0] # Handle both dict and list formats
|
||||
)
|
||||
else:
|
||||
# Standard GPU/CPU configuration
|
||||
self.val_loader = DataLoader(
|
||||
self.val_dataset,
|
||||
batch_size = None, # Dataset.__getitem__() already returns batches
|
||||
shuffle = False,
|
||||
num_workers = 0, # Keep validation dataloader single-threaded for consistency
|
||||
pin_memory = True
|
||||
)
|
||||
# Standard validation DataLoader configuration
|
||||
self.val_loader = DataLoader(
|
||||
self.val_dataset,
|
||||
batch_size = None, # Dataset.__getitem__() already returns batches
|
||||
shuffle = False,
|
||||
num_workers = 0, # Keep validation dataloader single-threaded for consistency
|
||||
pin_memory = True
|
||||
)
|
||||
|
||||
self.logger.info("Successfully initialized datasets")
|
||||
|
||||
@@ -278,36 +245,20 @@ class BrainToTextDecoder_Trainer:
|
||||
param.requires_grad = False
|
||||
|
||||
# Prepare model, optimizer, scheduler, and dataloaders for distributed training
|
||||
# For TPU, don't prepare DataLoaders with Accelerator to avoid batch_sampler issues
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
|
||||
if use_tpu:
|
||||
# On TPU, only prepare model, optimizer, and scheduler
|
||||
(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
) = self.accelerator.prepare(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
)
|
||||
# DataLoaders remain unprepared but will work with our custom configuration
|
||||
else:
|
||||
# Standard GPU/CPU preparation including DataLoaders
|
||||
(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
) = self.accelerator.prepare(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
)
|
||||
# Let Accelerator handle everything automatically for both GPU and TPU
|
||||
(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
) = self.accelerator.prepare(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
)
|
||||
|
||||
self.logger.info("Prepared model and dataloaders with Accelerator")
|
||||
|
||||
@@ -578,22 +529,12 @@ class BrainToTextDecoder_Trainer:
|
||||
# Train step
|
||||
start_time = time.time()
|
||||
|
||||
# Handle data movement - for TPU, manually move to device since DataLoader wasn't prepared by Accelerator
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
if use_tpu:
|
||||
# Manual data movement for TPU since DataLoaders are not prepared by Accelerator
|
||||
features = batch['input_features'].to(self.device)
|
||||
labels = batch['seq_class_ids'].to(self.device)
|
||||
n_time_steps = batch['n_time_steps'].to(self.device)
|
||||
phone_seq_lens = batch['phone_seq_lens'].to(self.device)
|
||||
day_indicies = batch['day_indicies'].to(self.device)
|
||||
else:
|
||||
# For GPU/CPU, data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
# Data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
|
||||
# Use Accelerator's autocast (mixed precision handled by Accelerator init)
|
||||
with self.accelerator.autocast():
|
||||
@@ -757,22 +698,12 @@ class BrainToTextDecoder_Trainer:
|
||||
|
||||
for i, batch in enumerate(loader):
|
||||
|
||||
# Handle data movement - for TPU, manually move to device since DataLoader wasn't prepared by Accelerator
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
if use_tpu:
|
||||
# Manual data movement for TPU since DataLoaders are not prepared by Accelerator
|
||||
features = batch['input_features'].to(self.device)
|
||||
labels = batch['seq_class_ids'].to(self.device)
|
||||
n_time_steps = batch['n_time_steps'].to(self.device)
|
||||
phone_seq_lens = batch['phone_seq_lens'].to(self.device)
|
||||
day_indicies = batch['day_indicies'].to(self.device)
|
||||
else:
|
||||
# For GPU/CPU, data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
# Data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
|
||||
# Determine if we should perform validation on this batch
|
||||
day = day_indicies[0].item()
|
||||
@@ -869,22 +800,14 @@ class BrainToTextDecoder_Trainer:
|
||||
|
||||
def inference_batch(self, batch, mode='inference'):
|
||||
'''
|
||||
TPU-compatible inference method for processing a full batch
|
||||
Inference method for processing a full batch
|
||||
'''
|
||||
self.model.eval()
|
||||
|
||||
# Handle data movement - for TPU, manually move to device since DataLoader wasn't prepared by Accelerator
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
if use_tpu:
|
||||
# Manual data movement for TPU since DataLoaders are not prepared by Accelerator
|
||||
features = batch['input_features'].to(self.device)
|
||||
day_indicies = batch['day_indicies'].to(self.device)
|
||||
n_time_steps = batch['n_time_steps'].to(self.device)
|
||||
else:
|
||||
# For GPU/CPU, data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
day_indicies = batch['day_indicies']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
# Data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
day_indicies = batch['day_indicies']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
|
||||
with torch.no_grad():
|
||||
with self.accelerator.autocast():
|
||||
|
Reference in New Issue
Block a user