Files
b2txt25/language_model/wenet/transformer/encoder_layer.py

269 lines
10 KiB
Python
Raw Normal View History

2025-07-02 12:18:09 -07:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
# Author: di.wu@mobvoi.com (DI WU)
"""Encoder self-attention layer definition."""
from typing import Optional, Tuple
import torch
from torch import nn
class TransformerEncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: to use layer_norm after each sub-block.
concat_after (bool): Whether to concat attention layer's input and
output.
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(
self,
size: int,
self_attn: torch.nn.Module,
feed_forward: torch.nn.Module,
dropout_rate: float,
normalize_before: bool = True,
concat_after: bool = False,
):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size, eps=1e-12)
self.norm2 = nn.LayerNorm(size, eps=1e-12)
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
# concat_linear may be not used in forward fuction,
# but will be saved in the *.pt
self.concat_linear = nn.Linear(size + size, size)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: Optional[torch.Tensor] = None,
output_cache: Optional[torch.Tensor] = None,
cnn_cache: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute encoded features.
Args:
x (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
pos_emb (torch.Tensor): just for interface compatibility
to ConformerEncoderLayer
mask_pad (torch.Tensor): does not used in transformer layer,
just for unified api with conformer.
output_cache (torch.Tensor): Cache tensor of the output
(#batch, time2, size), time2 < time in x.
cnn_cache (torch.Tensor): not used here, it's for interface
compatibility to ConformerEncoderLayer
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
residual = x
if self.normalize_before:
x = self.norm1(x)
if output_cache is None:
x_q = x
else:
assert output_cache.size(0) == x.size(0)
assert output_cache.size(2) == self.size
assert output_cache.size(1) < x.size(1)
chunk = x.size(1) - output_cache.size(1)
x_q = x[:, -chunk:, :]
residual = residual[:, -chunk:, :]
mask = mask[:, -chunk:, :]
if self.concat_after:
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(self.self_attn(x_q, x, x, mask))
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
if output_cache is not None:
x = torch.cat([output_cache, x], dim=1)
fake_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device)
return x, mask, fake_cnn_cache
class ConformerEncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
instance.
`PositionwiseFeedForward` instance can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: use layer_norm after each sub-block.
concat_after (bool): Whether to concat attention layer's input and
output.
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(
self,
size: int,
self_attn: torch.nn.Module,
feed_forward: Optional[nn.Module] = None,
feed_forward_macaron: Optional[nn.Module] = None,
conv_module: Optional[nn.Module] = None,
dropout_rate: float = 0.1,
normalize_before: bool = True,
concat_after: bool = False,
):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = nn.LayerNorm(size,
eps=1e-12) # for the CNN module
self.norm_final = nn.LayerNorm(
size, eps=1e-12) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
self.concat_linear = nn.Linear(size + size, size)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: Optional[torch.Tensor] = None,
output_cache: Optional[torch.Tensor] = None,
cnn_cache: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute encoded features.
Args:
x (torch.Tensor): (#batch, time, size)
mask (torch.Tensor): Mask tensor for the input (#batch, timetime).
pos_emb (torch.Tensor): positional encoding, must not be None
for ConformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1time)
output_cache (torch.Tensor): Cache tensor of the output
(#batch, time2, size), time2 < time in x.
cnn_cache (torch.Tensor): Convolution cache in conformer layer
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(
self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
if output_cache is None:
x_q = x
else:
assert output_cache.size(0) == x.size(0)
assert output_cache.size(2) == self.size
assert output_cache.size(1) < x.size(1)
chunk = x.size(1) - output_cache.size(1)
x_q = x[:, -chunk:, :]
residual = residual[:, -chunk:, :]
mask = mask[:, -chunk:, :]
x_att = self.self_attn(x_q, x, x, mask, pos_emb)
if self.concat_after:
x_concat = torch.cat((x, x_att), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device)
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
x = residual + self.dropout(x)
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
if output_cache is not None:
x = torch.cat([output_cache, x], dim=1)
return x, mask, new_cnn_cache