386 lines
18 KiB
Python
386 lines
18 KiB
Python
![]() |
#!/usr/bin/env python3
|
|||
|
"""
|
|||
|
高效版TTA-E参数搜索
|
|||
|
先缓存所有基础预测,然后快速搜索参数组合
|
|||
|
"""
|
|||
|
|
|||
|
import os
|
|||
|
import sys
|
|||
|
import torch
|
|||
|
import numpy as np
|
|||
|
import pandas as pd
|
|||
|
from omegaconf import OmegaConf
|
|||
|
import time
|
|||
|
from tqdm import tqdm
|
|||
|
import editdistance
|
|||
|
import argparse
|
|||
|
import itertools
|
|||
|
import json
|
|||
|
import pickle
|
|||
|
|
|||
|
# Add parent directories to path to import models
|
|||
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'model_training'))
|
|||
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'model_training_lstm'))
|
|||
|
|
|||
|
from model_training.rnn_model import GRUDecoder
|
|||
|
from model_training_lstm.rnn_model import LSTMDecoder
|
|||
|
from model_training.evaluate_model_helpers import *
|
|||
|
|
|||
|
def parse_arguments():
|
|||
|
parser = argparse.ArgumentParser(description='高效TTA-E参数搜索')
|
|||
|
|
|||
|
# 模型和数据路径
|
|||
|
parser.add_argument('--gru_model_path', type=str, default='/root/autodl-tmp/nejm-brain-to-text/data/t15_pretrained_rnn_baseline')
|
|||
|
parser.add_argument('--lstm_model_path', type=str, default='/root/autodl-tmp/nejm-brain-to-text/model_training_lstm/trained_models/baseline_rnn')
|
|||
|
parser.add_argument('--data_dir', type=str, default='../data/hdf5_data_final')
|
|||
|
parser.add_argument('--csv_path', type=str, default='../data/t15_copyTaskData_description.csv')
|
|||
|
parser.add_argument('--eval_type', type=str, default='val', choices=['val', 'test'])
|
|||
|
parser.add_argument('--gpu_number', type=int, default=0)
|
|||
|
|
|||
|
# 搜索空间
|
|||
|
parser.add_argument('--gru_weights', type=str, default='0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0')
|
|||
|
parser.add_argument('--tta_noise_weights', type=str, default='0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0')
|
|||
|
parser.add_argument('--tta_scale_weights', type=str, default='0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0')
|
|||
|
parser.add_argument('--tta_shift_weights', type=str, default='0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0')
|
|||
|
parser.add_argument('--tta_smooth_weights', type=str, default='0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0')
|
|||
|
|
|||
|
# TTA参数
|
|||
|
parser.add_argument('--tta_noise_std', type=float, default=0.01)
|
|||
|
parser.add_argument('--tta_smooth_range', type=float, default=0.5)
|
|||
|
parser.add_argument('--tta_scale_range', type=float, default=0.05)
|
|||
|
parser.add_argument('--tta_cut_max', type=int, default=3)
|
|||
|
|
|||
|
# 缓存控制
|
|||
|
parser.add_argument('--cache_file', type=str, default='tta_cache.pkl')
|
|||
|
parser.add_argument('--force_recache', action='store_true')
|
|||
|
parser.add_argument('--output_file', type=str, default='search_results.json')
|
|||
|
|
|||
|
return parser.parse_args()
|
|||
|
|
|||
|
def generate_base_predictions(args):
|
|||
|
"""生成所有基础增强的预测结果"""
|
|||
|
print("🔄 生成基础预测缓存...")
|
|||
|
|
|||
|
# 设置设备
|
|||
|
if torch.cuda.is_available() and args.gpu_number >= 0:
|
|||
|
device = torch.device(f'cuda:{args.gpu_number}')
|
|||
|
else:
|
|||
|
device = torch.device('cpu')
|
|||
|
|
|||
|
# 加载模型
|
|||
|
gru_model_args = OmegaConf.load(os.path.join(args.gru_model_path, 'checkpoint/args.yaml'))
|
|||
|
lstm_model_args = OmegaConf.load(os.path.join(args.lstm_model_path, 'checkpoint/args.yaml'))
|
|||
|
|
|||
|
gru_model = GRUDecoder(
|
|||
|
neural_dim=gru_model_args['model']['n_input_features'],
|
|||
|
n_units=gru_model_args['model']['n_units'],
|
|||
|
n_days=len(gru_model_args['dataset']['sessions']),
|
|||
|
n_classes=gru_model_args['dataset']['n_classes'],
|
|||
|
rnn_dropout=gru_model_args['model']['rnn_dropout'],
|
|||
|
input_dropout=gru_model_args['model']['input_network']['input_layer_dropout'],
|
|||
|
n_layers=gru_model_args['model']['n_layers'],
|
|||
|
patch_size=gru_model_args['model']['patch_size'],
|
|||
|
patch_stride=gru_model_args['model']['patch_stride'],
|
|||
|
)
|
|||
|
|
|||
|
lstm_model = LSTMDecoder(
|
|||
|
neural_dim=lstm_model_args['model']['n_input_features'],
|
|||
|
n_units=lstm_model_args['model']['n_units'],
|
|||
|
n_days=len(lstm_model_args['dataset']['sessions']),
|
|||
|
n_classes=lstm_model_args['dataset']['n_classes'],
|
|||
|
rnn_dropout=lstm_model_args['model']['rnn_dropout'],
|
|||
|
input_dropout=lstm_model_args['model']['input_network']['input_layer_dropout'],
|
|||
|
n_layers=lstm_model_args['model']['n_layers'],
|
|||
|
patch_size=lstm_model_args['model']['patch_size'],
|
|||
|
patch_stride=lstm_model_args['model']['patch_stride'],
|
|||
|
)
|
|||
|
|
|||
|
# 加载权重
|
|||
|
gru_checkpoint = torch.load(os.path.join(args.gru_model_path, 'checkpoint/best_checkpoint'),
|
|||
|
weights_only=False, map_location=device)
|
|||
|
lstm_checkpoint = torch.load(os.path.join(args.lstm_model_path, 'checkpoint/best_checkpoint'),
|
|||
|
weights_only=False, map_location=device)
|
|||
|
|
|||
|
# 清理键名
|
|||
|
for checkpoint in [gru_checkpoint, lstm_checkpoint]:
|
|||
|
for key in list(checkpoint['model_state_dict'].keys()):
|
|||
|
checkpoint['model_state_dict'][key.replace("module.", "")] = checkpoint['model_state_dict'].pop(key)
|
|||
|
checkpoint['model_state_dict'][key.replace("_orig_mod.", "")] = checkpoint['model_state_dict'].pop(key)
|
|||
|
|
|||
|
gru_model.load_state_dict(gru_checkpoint['model_state_dict'])
|
|||
|
lstm_model.load_state_dict(lstm_checkpoint['model_state_dict'])
|
|||
|
|
|||
|
gru_model.to(device)
|
|||
|
lstm_model.to(device)
|
|||
|
gru_model.eval()
|
|||
|
lstm_model.eval()
|
|||
|
|
|||
|
# 加载数据
|
|||
|
b2txt_csv_df = pd.read_csv(args.csv_path)
|
|||
|
test_data = {}
|
|||
|
total_trials = 0
|
|||
|
|
|||
|
for session in gru_model_args['dataset']['sessions']:
|
|||
|
files = [f for f in os.listdir(os.path.join(args.data_dir, session)) if f.endswith('.hdf5')]
|
|||
|
if f'data_{args.eval_type}.hdf5' in files:
|
|||
|
eval_file = os.path.join(args.data_dir, session, f'data_{args.eval_type}.hdf5')
|
|||
|
data = load_h5py_file(eval_file, b2txt_csv_df)
|
|||
|
test_data[session] = data
|
|||
|
total_trials += len(test_data[session]["neural_features"])
|
|||
|
|
|||
|
print(f"总试验数: {total_trials}")
|
|||
|
|
|||
|
# 生成所有基础增强类型的预测
|
|||
|
augmentation_types = ['original', 'noise', 'scale', 'shift', 'smooth']
|
|||
|
cache = {}
|
|||
|
|
|||
|
for aug_type in augmentation_types:
|
|||
|
print(f"处理增强类型: {aug_type}")
|
|||
|
cache[aug_type] = {}
|
|||
|
|
|||
|
with tqdm(total=total_trials, desc=f'{aug_type}', unit='trial') as pbar:
|
|||
|
for session, data in test_data.items():
|
|||
|
input_layer = gru_model_args['dataset']['sessions'].index(session)
|
|||
|
cache[aug_type][session] = []
|
|||
|
|
|||
|
for trial in range(len(data['neural_features'])):
|
|||
|
neural_input = data['neural_features'][trial]
|
|||
|
neural_input = np.expand_dims(neural_input, axis=0)
|
|||
|
neural_input = torch.tensor(neural_input, device=device, dtype=torch.bfloat16)
|
|||
|
|
|||
|
# 应用增强
|
|||
|
x_aug = neural_input.clone()
|
|||
|
if aug_type == 'noise':
|
|||
|
noise_scale = args.tta_noise_std * (0.5 + 0.5 * np.random.rand())
|
|||
|
x_aug = x_aug + torch.randn_like(x_aug) * noise_scale
|
|||
|
elif aug_type == 'scale':
|
|||
|
scale_factor = 1.0 + (torch.rand(1).item() - 0.5) * 2 * args.tta_scale_range
|
|||
|
x_aug = x_aug * scale_factor
|
|||
|
elif aug_type == 'shift' and args.tta_cut_max > 0:
|
|||
|
shift_amount = np.random.randint(1, min(args.tta_cut_max + 1, x_aug.shape[1] // 8))
|
|||
|
x_aug = torch.cat([x_aug[:, shift_amount:, :], x_aug[:, :shift_amount, :]], dim=1)
|
|||
|
elif aug_type == 'smooth':
|
|||
|
smooth_variation = (torch.rand(1).item() - 0.5) * 2 * args.tta_smooth_range
|
|||
|
varied_smooth_std = max(0.3, gru_model_args['dataset']['data_transforms']['smooth_kernel_std'] + smooth_variation)
|
|||
|
|
|||
|
# 应用高斯平滑
|
|||
|
with torch.autocast(device_type="cuda", enabled=gru_model_args['use_amp'], dtype=torch.bfloat16):
|
|||
|
if aug_type == 'smooth':
|
|||
|
x_smoothed = gauss_smooth(
|
|||
|
inputs=x_aug, device=device,
|
|||
|
smooth_kernel_std=varied_smooth_std,
|
|||
|
smooth_kernel_size=gru_model_args['dataset']['data_transforms']['smooth_kernel_size'],
|
|||
|
padding='valid',
|
|||
|
)
|
|||
|
else:
|
|||
|
x_smoothed = gauss_smooth(
|
|||
|
inputs=x_aug, device=device,
|
|||
|
smooth_kernel_std=gru_model_args['dataset']['data_transforms']['smooth_kernel_std'],
|
|||
|
smooth_kernel_size=gru_model_args['dataset']['data_transforms']['smooth_kernel_size'],
|
|||
|
padding='valid',
|
|||
|
)
|
|||
|
|
|||
|
with torch.no_grad():
|
|||
|
gru_logits, _ = gru_model(x=x_smoothed, day_idx=torch.tensor([input_layer], device=device), states=None, return_state=True)
|
|||
|
lstm_logits, _ = lstm_model(x=x_smoothed, day_idx=torch.tensor([input_layer], device=device), states=None, return_state=True)
|
|||
|
|
|||
|
gru_probs = torch.softmax(gru_logits, dim=-1).float().cpu().numpy()
|
|||
|
lstm_probs = torch.softmax(lstm_logits, dim=-1).float().cpu().numpy()
|
|||
|
|
|||
|
# 保存预测和真实标签信息
|
|||
|
trial_data = {
|
|||
|
'gru_probs': gru_probs,
|
|||
|
'lstm_probs': lstm_probs,
|
|||
|
'trial_info': {
|
|||
|
'session': session,
|
|||
|
'block_num': data['block_num'][trial],
|
|||
|
'trial_num': data['trial_num'][trial],
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if args.eval_type == 'val':
|
|||
|
trial_data['trial_info'].update({
|
|||
|
'seq_class_ids': data['seq_class_ids'][trial],
|
|||
|
'seq_len': data['seq_len'][trial],
|
|||
|
'sentence_label': data['sentence_label'][trial],
|
|||
|
})
|
|||
|
|
|||
|
cache[aug_type][session].append(trial_data)
|
|||
|
pbar.update(1)
|
|||
|
|
|||
|
# 保存缓存
|
|||
|
with open(args.cache_file, 'wb') as f:
|
|||
|
pickle.dump(cache, f)
|
|||
|
|
|||
|
print(f"✅ 缓存已保存到 {args.cache_file}")
|
|||
|
return cache
|
|||
|
|
|||
|
def evaluate_config(cache, gru_weight, tta_weights, eval_type='val'):
|
|||
|
"""评估特定参数配置"""
|
|||
|
lstm_weight = 1.0 - gru_weight
|
|||
|
epsilon = 1e-8
|
|||
|
|
|||
|
total_edit_distance = 0
|
|||
|
total_true_length = 0
|
|||
|
|
|||
|
# 归一化TTA权重
|
|||
|
enabled_augmentations = [k for k, v in tta_weights.items() if v > 0]
|
|||
|
if len(enabled_augmentations) == 0:
|
|||
|
return float('inf')
|
|||
|
|
|||
|
total_tta_weight = sum(tta_weights[k] for k in enabled_augmentations)
|
|||
|
norm_tta_weights = {k: tta_weights[k]/total_tta_weight for k in enabled_augmentations}
|
|||
|
|
|||
|
# 遍历所有试验
|
|||
|
for session in cache['original'].keys():
|
|||
|
for trial_idx in range(len(cache['original'][session])):
|
|||
|
trial_info = cache['original'][session][trial_idx]['trial_info']
|
|||
|
|
|||
|
if eval_type == 'val' and 'seq_class_ids' not in trial_info:
|
|||
|
continue
|
|||
|
|
|||
|
# 集成所有启用的增强
|
|||
|
weighted_gru_probs = None
|
|||
|
weighted_lstm_probs = None
|
|||
|
|
|||
|
for aug_type in enabled_augmentations:
|
|||
|
weight = norm_tta_weights[aug_type]
|
|||
|
gru_probs = torch.tensor(cache[aug_type][session][trial_idx]['gru_probs'])
|
|||
|
lstm_probs = torch.tensor(cache[aug_type][session][trial_idx]['lstm_probs'])
|
|||
|
|
|||
|
if weighted_gru_probs is None:
|
|||
|
weighted_gru_probs = weight * gru_probs
|
|||
|
weighted_lstm_probs = weight * lstm_probs
|
|||
|
else:
|
|||
|
# 处理长度不同的情况
|
|||
|
min_len = min(weighted_gru_probs.shape[1], gru_probs.shape[1])
|
|||
|
weighted_gru_probs = weighted_gru_probs[:, :min_len, :] + weight * gru_probs[:, :min_len, :]
|
|||
|
weighted_lstm_probs = weighted_lstm_probs[:, :min_len, :] + weight * lstm_probs[:, :min_len, :]
|
|||
|
|
|||
|
# GRU+LSTM集成
|
|||
|
weighted_gru_probs = weighted_gru_probs + epsilon
|
|||
|
weighted_lstm_probs = weighted_lstm_probs + epsilon
|
|||
|
|
|||
|
log_ensemble_probs = (gru_weight * torch.log(weighted_gru_probs) +
|
|||
|
lstm_weight * torch.log(weighted_lstm_probs))
|
|||
|
ensemble_probs = torch.exp(log_ensemble_probs)
|
|||
|
ensemble_probs = ensemble_probs / ensemble_probs.sum(dim=-1, keepdim=True)
|
|||
|
|
|||
|
# 解码
|
|||
|
pred_seq = torch.argmax(ensemble_probs[0], dim=-1).numpy()
|
|||
|
pred_seq = [int(p) for p in pred_seq if p != 0]
|
|||
|
pred_seq = [pred_seq[i] for i in range(len(pred_seq)) if i == 0 or pred_seq[i] != pred_seq[i-1]]
|
|||
|
pred_phonemes = [LOGIT_TO_PHONEME[p] for p in pred_seq]
|
|||
|
|
|||
|
if eval_type == 'val':
|
|||
|
true_seq = trial_info['seq_class_ids'][0:trial_info['seq_len']]
|
|||
|
true_phonemes = [LOGIT_TO_PHONEME[p] for p in true_seq]
|
|||
|
|
|||
|
ed = editdistance.eval(true_phonemes, pred_phonemes)
|
|||
|
total_edit_distance += ed
|
|||
|
total_true_length += len(true_phonemes)
|
|||
|
|
|||
|
if eval_type == 'val' and total_true_length > 0:
|
|||
|
return 100 * total_edit_distance / total_true_length
|
|||
|
return 0.0
|
|||
|
|
|||
|
def search_parameters(cache, args):
|
|||
|
"""搜索最优参数"""
|
|||
|
print("🔍 开始参数搜索...")
|
|||
|
|
|||
|
# 解析搜索空间
|
|||
|
gru_weights = [float(x) for x in args.gru_weights.split(',')]
|
|||
|
noise_weights = [float(x) for x in args.tta_noise_weights.split(',')]
|
|||
|
scale_weights = [float(x) for x in args.tta_scale_weights.split(',')]
|
|||
|
shift_weights = [float(x) for x in args.tta_shift_weights.split(',')]
|
|||
|
smooth_weights = [float(x) for x in args.tta_smooth_weights.split(',')]
|
|||
|
|
|||
|
total_configs = len(gru_weights) * len(noise_weights) * len(scale_weights) * len(shift_weights) * len(smooth_weights)
|
|||
|
print(f"搜索空间: {total_configs} 个配置")
|
|||
|
|
|||
|
best_per = float('inf')
|
|||
|
best_config = None
|
|||
|
all_results = []
|
|||
|
|
|||
|
config_count = 0
|
|||
|
for gru_w in gru_weights:
|
|||
|
for noise_w in noise_weights:
|
|||
|
for scale_w in scale_weights:
|
|||
|
for shift_w in shift_weights:
|
|||
|
for smooth_w in smooth_weights:
|
|||
|
config_count += 1
|
|||
|
|
|||
|
tta_weights = {
|
|||
|
'original': 1.0, # 总是包含原始数据
|
|||
|
'noise': noise_w,
|
|||
|
'scale': scale_w,
|
|||
|
'shift': shift_w,
|
|||
|
'smooth': smooth_w
|
|||
|
}
|
|||
|
|
|||
|
per = evaluate_config(cache, gru_w, tta_weights, args.eval_type)
|
|||
|
|
|||
|
result = {
|
|||
|
'gru_weight': gru_w,
|
|||
|
'lstm_weight': 1.0 - gru_w,
|
|||
|
'tta_weights': tta_weights,
|
|||
|
'per': per
|
|||
|
}
|
|||
|
all_results.append(result)
|
|||
|
|
|||
|
if per < best_per:
|
|||
|
best_per = per
|
|||
|
best_config = result
|
|||
|
print(f"🎯 新最佳: PER={per:.3f}% | GRU={gru_w:.1f} | TTA=({noise_w},{scale_w},{shift_w},{smooth_w})")
|
|||
|
|
|||
|
if config_count % 50 == 0:
|
|||
|
print(f"进度: {config_count}/{total_configs} ({100*config_count/total_configs:.1f}%)")
|
|||
|
|
|||
|
return all_results, best_config
|
|||
|
|
|||
|
def main():
|
|||
|
args = parse_arguments()
|
|||
|
|
|||
|
print("🚀 高效TTA-E参数搜索")
|
|||
|
print("=" * 50)
|
|||
|
|
|||
|
# 第一阶段:生成或加载缓存
|
|||
|
if args.force_recache or not os.path.exists(args.cache_file):
|
|||
|
cache = generate_base_predictions(args)
|
|||
|
else:
|
|||
|
print(f"📁 加载现有缓存: {args.cache_file}")
|
|||
|
with open(args.cache_file, 'rb') as f:
|
|||
|
cache = pickle.load(f)
|
|||
|
print("✅ 缓存加载完成")
|
|||
|
|
|||
|
# 第二阶段:参数搜索
|
|||
|
all_results, best_config = search_parameters(cache, args)
|
|||
|
|
|||
|
# 保存结果
|
|||
|
results = {
|
|||
|
'best_config': best_config,
|
|||
|
'all_results': all_results,
|
|||
|
'args': vars(args),
|
|||
|
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S")
|
|||
|
}
|
|||
|
|
|||
|
with open(args.output_file, 'w') as f:
|
|||
|
json.dump(results, f, indent=2)
|
|||
|
|
|||
|
print("\n" + "=" * 50)
|
|||
|
print("🏆 搜索完成!")
|
|||
|
print(f"最佳配置: PER={best_config['per']:.3f}%")
|
|||
|
print(f"GRU权重: {best_config['gru_weight']:.1f}")
|
|||
|
print(f"TTA权重: {best_config['tta_weights']}")
|
|||
|
print(f"结果保存到: {args.output_file}")
|
|||
|
|
|||
|
# 显示top-10
|
|||
|
sorted_results = sorted(all_results, key=lambda x: x['per'])[:10]
|
|||
|
print(f"\n📊 Top-10配置:")
|
|||
|
for i, result in enumerate(sorted_results):
|
|||
|
tw = result['tta_weights']
|
|||
|
print(f"{i+1:2d}. PER={result['per']:6.3f}% | GRU={result['gru_weight']:.1f} | "
|
|||
|
f"TTA=({tw['noise']:.1f},{tw['scale']:.1f},{tw['shift']:.1f},{tw['smooth']:.1f})")
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
main()
|