223 lines
8.9 KiB
Python
223 lines
8.9 KiB
Python
![]() |
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
# Copyright 2019 Shigeki Karita
|
||
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||
|
"""Multi-Head Attention layer definition."""
|
||
|
|
||
|
import math
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
|
||
|
class MultiHeadedAttention(nn.Module):
|
||
|
"""Multi-Head Attention layer.
|
||
|
|
||
|
Args:
|
||
|
n_head (int): The number of heads.
|
||
|
n_feat (int): The number of features.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
|
||
|
"""
|
||
|
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
|
||
|
"""Construct an MultiHeadedAttention object."""
|
||
|
super().__init__()
|
||
|
assert n_feat % n_head == 0
|
||
|
# We assume d_v always equals d_k
|
||
|
self.d_k = n_feat // n_head
|
||
|
self.h = n_head
|
||
|
self.linear_q = nn.Linear(n_feat, n_feat)
|
||
|
self.linear_k = nn.Linear(n_feat, n_feat)
|
||
|
self.linear_v = nn.Linear(n_feat, n_feat)
|
||
|
self.linear_out = nn.Linear(n_feat, n_feat)
|
||
|
self.dropout = nn.Dropout(p=dropout_rate)
|
||
|
|
||
|
def forward_qkv(
|
||
|
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
"""Transform query, key and value.
|
||
|
|
||
|
Args:
|
||
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Transformed query tensor, size
|
||
|
(#batch, n_head, time1, d_k).
|
||
|
torch.Tensor: Transformed key tensor, size
|
||
|
(#batch, n_head, time2, d_k).
|
||
|
torch.Tensor: Transformed value tensor, size
|
||
|
(#batch, n_head, time2, d_k).
|
||
|
|
||
|
"""
|
||
|
n_batch = query.size(0)
|
||
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
||
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
||
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
||
|
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
||
|
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
||
|
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
||
|
|
||
|
return q, k, v
|
||
|
|
||
|
def forward_attention(self, value: torch.Tensor, scores: torch.Tensor,
|
||
|
mask: Optional[torch.Tensor]) -> torch.Tensor:
|
||
|
"""Compute attention context vector.
|
||
|
|
||
|
Args:
|
||
|
value (torch.Tensor): Transformed value, size
|
||
|
(#batch, n_head, time2, d_k).
|
||
|
scores (torch.Tensor): Attention score, size
|
||
|
(#batch, n_head, time1, time2).
|
||
|
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
||
|
(#batch, time1, time2).
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Transformed value (#batch, time1, d_model)
|
||
|
weighted by the attention score (#batch, time1, time2).
|
||
|
|
||
|
"""
|
||
|
n_batch = value.size(0)
|
||
|
if mask is not None:
|
||
|
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||
|
scores = scores.masked_fill(mask, -float('inf'))
|
||
|
attn = torch.softmax(scores, dim=-1).masked_fill(
|
||
|
mask, 0.0) # (batch, head, time1, time2)
|
||
|
else:
|
||
|
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
||
|
|
||
|
p_attn = self.dropout(attn)
|
||
|
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
||
|
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
||
|
self.h * self.d_k)
|
||
|
) # (batch, time1, d_model)
|
||
|
|
||
|
return self.linear_out(x) # (batch, time1, d_model)
|
||
|
|
||
|
def forward(self, query: torch.Tensor, key: torch.Tensor,
|
||
|
value: torch.Tensor,
|
||
|
mask: Optional[torch.Tensor],
|
||
|
pos_emb: torch.Tensor = torch.empty(0),) -> torch.Tensor:
|
||
|
"""Compute scaled dot product attention.
|
||
|
|
||
|
Args:
|
||
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||
|
(#batch, time1, time2).
|
||
|
1.When applying cross attention between decoder and encoder,
|
||
|
the batch padding mask for input is in (#batch, 1, T) shape.
|
||
|
2.When applying self attention of encoder,
|
||
|
the mask is in (#batch, T, T) shape.
|
||
|
3.When applying self attention of decoder,
|
||
|
the mask is in (#batch, L, L) shape.
|
||
|
4.If the different position in decoder see different block
|
||
|
of the encoder, such as Mocha, the passed in mask could be
|
||
|
in (#batch, L, T) shape. But there is no such case in current
|
||
|
Wenet.
|
||
|
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||
|
|
||
|
"""
|
||
|
q, k, v = self.forward_qkv(query, key, value)
|
||
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||
|
return self.forward_attention(v, scores, mask)
|
||
|
|
||
|
|
||
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
||
|
"""Multi-Head Attention layer with relative position encoding.
|
||
|
Paper: https://arxiv.org/abs/1901.02860
|
||
|
Args:
|
||
|
n_head (int): The number of heads.
|
||
|
n_feat (int): The number of features.
|
||
|
dropout_rate (float): Dropout rate.
|
||
|
"""
|
||
|
def __init__(self, n_head, n_feat, dropout_rate):
|
||
|
"""Construct an RelPositionMultiHeadedAttention object."""
|
||
|
super().__init__(n_head, n_feat, dropout_rate)
|
||
|
# linear transformation for positional encoding
|
||
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
||
|
# these two learnable bias are used in matrix c and matrix d
|
||
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||
|
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||
|
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||
|
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
||
|
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
||
|
|
||
|
def rel_shift(self, x, zero_triu: bool = False):
|
||
|
"""Compute relative positinal encoding.
|
||
|
Args:
|
||
|
x (torch.Tensor): Input tensor (batch, time, size).
|
||
|
zero_triu (bool): If true, return the lower triangular part of
|
||
|
the matrix.
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor.
|
||
|
"""
|
||
|
|
||
|
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
||
|
device=x.device,
|
||
|
dtype=x.dtype)
|
||
|
x_padded = torch.cat([zero_pad, x], dim=-1)
|
||
|
|
||
|
x_padded = x_padded.view(x.size()[0],
|
||
|
x.size()[1],
|
||
|
x.size(3) + 1, x.size(2))
|
||
|
x = x_padded[:, :, 1:].view_as(x)
|
||
|
|
||
|
if zero_triu:
|
||
|
ones = torch.ones((x.size(2), x.size(3)))
|
||
|
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
|
||
|
|
||
|
return x
|
||
|
|
||
|
def forward(self, query: torch.Tensor, key: torch.Tensor,
|
||
|
value: torch.Tensor, mask: Optional[torch.Tensor],
|
||
|
pos_emb: torch.Tensor):
|
||
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
||
|
Args:
|
||
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||
|
(#batch, time1, time2).
|
||
|
pos_emb (torch.Tensor): Positional embedding tensor
|
||
|
(#batch, time2, size).
|
||
|
Returns:
|
||
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||
|
"""
|
||
|
q, k, v = self.forward_qkv(query, key, value)
|
||
|
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
||
|
|
||
|
n_batch_pos = pos_emb.size(0)
|
||
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
||
|
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
||
|
|
||
|
# (batch, head, time1, d_k)
|
||
|
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
||
|
# (batch, head, time1, d_k)
|
||
|
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
||
|
|
||
|
# compute attention score
|
||
|
# first compute matrix a and matrix c
|
||
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||
|
# (batch, head, time1, time2)
|
||
|
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
||
|
|
||
|
# compute matrix b and matrix d
|
||
|
# (batch, head, time1, time2)
|
||
|
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
||
|
# Remove rel_shift since it is useless in speech recognition,
|
||
|
# and it requires special attention for streaming.
|
||
|
# matrix_bd = self.rel_shift(matrix_bd)
|
||
|
|
||
|
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
||
|
self.d_k) # (batch, head, time1, time2)
|
||
|
|
||
|
return self.forward_attention(v, scores, mask)
|