77 lines
3.3 KiB
C++
77 lines
3.3 KiB
C++
![]() |
#include "pybind11/pybind11.h"
|
||
|
#include "pybind11/stl.h"
|
||
|
#include "pybind11/numpy.h"
|
||
|
#include "torch/script.h"
|
||
|
|
||
|
#include "decoder/brain_speech_decoder.h"
|
||
|
#include "utils/log.h"
|
||
|
|
||
|
namespace py = pybind11;
|
||
|
|
||
|
namespace wenet {
|
||
|
|
||
|
// Wrapper function to conver np array into torch tensor
|
||
|
void DecodeNumpy(BrainSpeechDecoder &decoder,
|
||
|
const py::array_t<float, py::array::c_style | py::array::forcecast> &input,
|
||
|
const py::array_t<float, py::array::c_style | py::array::forcecast> &log_priors_input,
|
||
|
const float blank_penalty) {
|
||
|
auto input_info = input.request();
|
||
|
auto log_priors_info = log_priors_input.request();
|
||
|
CHECK(input_info.ndim == 2);
|
||
|
CHECK(log_priors_info.ndim == 2);
|
||
|
|
||
|
float *input_data = static_cast<float *>(input_info.ptr);
|
||
|
float *log_priors_data = static_cast<float *>(log_priors_info.ptr);
|
||
|
torch::Tensor logits = torch::from_blob(
|
||
|
input_data, {input_info.shape[0], input_info.shape[1]}, torch::kFloat32);
|
||
|
torch::Tensor log_priors = torch::from_blob(
|
||
|
log_priors_data, {log_priors_info.shape[0], log_priors_info.shape[1]}, torch::kFloat32);
|
||
|
|
||
|
auto log_probs = torch::log_softmax(logits, -1);
|
||
|
log_probs = log_probs - log_priors;
|
||
|
auto blank_log_probs = log_probs.index({torch::indexing::Slice(),
|
||
|
torch::indexing::Slice(0, 1)});
|
||
|
log_probs.index_put_({torch::indexing::Slice(),
|
||
|
torch::indexing::Slice(0, 1)}, blank_log_probs - blank_penalty);
|
||
|
decoder.Decode(log_probs);
|
||
|
}
|
||
|
|
||
|
void DecodeNumpyLogProbs(BrainSpeechDecoder &decoder,
|
||
|
const py::array_t<float, py::array::c_style | py::array::forcecast> &input) {
|
||
|
auto input_info = input.request();
|
||
|
CHECK(input_info.ndim == 2);
|
||
|
|
||
|
float *input_data = static_cast<float *>(input_info.ptr);
|
||
|
torch::Tensor log_probs = torch::from_blob(
|
||
|
input_data, {input_info.shape[0], input_info.shape[1]}, torch::kFloat32);
|
||
|
|
||
|
decoder.Decode(log_probs);
|
||
|
}
|
||
|
|
||
|
PYBIND11_MODULE(lm_decoder, m) {
|
||
|
py::class_<DecodeOptions, std::shared_ptr<DecodeOptions> >(m, "DecodeOptions")
|
||
|
.def(py::init<int, int, float, float, float, float, float, int>());
|
||
|
|
||
|
py::class_<DecodeResource, std::shared_ptr<DecodeResource> >(m, "DecodeResource")
|
||
|
.def(py::init<const std::string &, const std::string &, const std::string &, const std::string &, const std::string &>());
|
||
|
|
||
|
py::class_<DecodeResult>(m, "DecodeResult")
|
||
|
.def_readonly("ac_score", &DecodeResult::ac_score)
|
||
|
.def_readonly("lm_score", &DecodeResult::lm_score)
|
||
|
.def_readonly("sentence", &DecodeResult::sentence);
|
||
|
|
||
|
py::class_<BrainSpeechDecoder>(m, "BrainSpeechDecoder")
|
||
|
.def(py::init<std::shared_ptr<DecodeResource>, std::shared_ptr<DecodeOptions> >())
|
||
|
.def("SetOpt", &BrainSpeechDecoder::SetOpt)
|
||
|
.def("Decode", &BrainSpeechDecoder::Decode)
|
||
|
.def("Rescore", &BrainSpeechDecoder::Rescore)
|
||
|
.def("Reset", &BrainSpeechDecoder::Reset)
|
||
|
.def("FinishDecoding", &BrainSpeechDecoder::FinishDecoding)
|
||
|
.def("DecodedSomething", &BrainSpeechDecoder::DecodedSomething)
|
||
|
.def("result", &BrainSpeechDecoder::result);
|
||
|
|
||
|
m.def("DecodeNumpy", &DecodeNumpy)
|
||
|
.def("DecodeNumpyLogProbs", &DecodeNumpyLogProbs);
|
||
|
}
|
||
|
|
||
|
} // namespace wenet
|