Files
b2txt25/TTA-E/staged_search.py

294 lines
11 KiB
Python
Raw Normal View History

2025-10-06 15:17:44 +08:00
#!/usr/bin/env python3
"""
分阶段TTA-E参数搜索
先粗搜索找到有希望的区域再精细搜索
"""
import os
import sys
import argparse
import json
import numpy as np
from itertools import product
import subprocess
import time
def parse_arguments():
parser = argparse.ArgumentParser(description='分阶段TTA-E参数搜索')
# 基础参数
parser.add_argument('--base_script', type=str, default='evaluate_model.py')
parser.add_argument('--data_dir', type=str, default='../data/hdf5_data_final')
parser.add_argument('--eval_type', type=str, default='val')
parser.add_argument('--gpu_number', type=int, default=0)
# 搜索阶段控制
parser.add_argument('--stage', type=str, default='coarse', choices=['coarse', 'fine', 'both'],
help='搜索阶段coarse=粗搜索fine=精细搜索both=两阶段')
parser.add_argument('--coarse_results', type=str, default='coarse_results.json',
help='粗搜索结果文件(用于精细搜索阶段)')
parser.add_argument('--final_results', type=str, default='final_results.json',
help='最终结果文件')
# 粗搜索参数步长0.2
parser.add_argument('--coarse_gru_weights', type=str, default='0.2,0.4,0.6,0.8,1.0')
parser.add_argument('--coarse_tta_weights', type=str, default='0.0,0.5,1.0')
# 精细搜索参数步长0.1,在最佳配置周围)
parser.add_argument('--fine_range', type=float, default=0.3,
help='精细搜索范围(围绕最佳配置的±范围)')
parser.add_argument('--fine_step', type=float, default=0.1,
help='精细搜索步长')
# 筛选控制
parser.add_argument('--top_k', type=int, default=5,
help='选择前K个最佳配置进行精细搜索')
return parser.parse_args()
def generate_coarse_search_space(args):
"""生成粗搜索空间"""
gru_weights = [float(x.strip()) for x in args.coarse_gru_weights.split(',')]
tta_weights = [float(x.strip()) for x in args.coarse_tta_weights.split(',')]
search_space = []
for gru_w in gru_weights:
for noise_w in tta_weights:
for scale_w in tta_weights:
for shift_w in tta_weights:
for smooth_w in tta_weights:
search_space.append((gru_w, 1.0, noise_w, scale_w, shift_w, smooth_w))
return search_space
def generate_fine_search_space(best_configs, args):
"""基于最佳配置生成精细搜索空间"""
fine_search_space = []
for config in best_configs:
gru_w = config['gru_weight']
tta_w = config['tta_weights']
# 在每个参数周围生成精细搜索点
gru_range = np.arange(
max(0.1, gru_w - args.fine_range),
min(1.0, gru_w + args.fine_range) + args.fine_step,
args.fine_step
)
for param_name in ['noise', 'scale', 'shift', 'smooth']:
base_val = tta_w[param_name]
param_range = np.arange(
max(0.0, base_val - args.fine_range),
min(1.0, base_val + args.fine_range) + args.fine_step,
args.fine_step
)
# 围绕当前最佳配置生成邻域
for gru_fine in gru_range:
for noise_fine in param_range if param_name == 'noise' else [tta_w['noise']]:
for scale_fine in param_range if param_name == 'scale' else [tta_w['scale']]:
for shift_fine in param_range if param_name == 'shift' else [tta_w['shift']]:
for smooth_fine in param_range if param_name == 'smooth' else [tta_w['smooth']]:
config_tuple = (
round(gru_fine, 1), 1.0,
round(noise_fine, 1), round(scale_fine, 1),
round(shift_fine, 1), round(smooth_fine, 1)
)
if config_tuple not in fine_search_space:
fine_search_space.append(config_tuple)
return fine_search_space
def run_evaluation(config, args):
"""运行单个配置的评估"""
gru_w, orig_w, noise_w, scale_w, shift_w, smooth_w = config
tta_weights_str = f"{orig_w},{noise_w},{scale_w},{shift_w},{smooth_w}"
cmd = [
'python', args.base_script,
'--gru_weight', str(gru_w),
'--tta_weights', tta_weights_str,
'--data_dir', args.data_dir,
'--eval_type', args.eval_type,
'--gpu_number', str(args.gpu_number)
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, timeout=1800) # 30分钟超时
# 解析PER结果
per = None
for line in result.stdout.split('\n'):
if 'Aggregate Phoneme Error Rate (PER):' in line:
per_str = line.split(':')[-1].strip().replace('%', '')
per = float(per_str)
break
if per is None:
print(f"⚠️ 无法解析PER结果: {config}")
per = float('inf')
return {
'config': config,
'gru_weight': gru_w,
'tta_weights': {
'original': orig_w,
'noise': noise_w,
'scale': scale_w,
'shift': shift_w,
'smooth': smooth_w
},
'per': per,
'success': result.returncode == 0,
'stdout': result.stdout[:1000], # 只保存前1000字符
}
except subprocess.TimeoutExpired:
return {'config': config, 'per': float('inf'), 'error': 'Timeout'}
except Exception as e:
return {'config': config, 'per': float('inf'), 'error': str(e)}
def run_coarse_search(args):
"""运行粗搜索"""
print("🔍 第一阶段:粗搜索")
print("=" * 50)
search_space = generate_coarse_search_space(args)
total_configs = len(search_space)
print(f"粗搜索空间: {total_configs} 个配置")
print(f"GRU权重: {args.coarse_gru_weights}")
print(f"TTA权重: {args.coarse_tta_weights}")
print()
results = []
best_per = float('inf')
for i, config in enumerate(search_space):
print(f"进度: {i+1}/{total_configs} ({100*(i+1)/total_configs:.1f}%)")
print(f"配置: GRU={config[0]:.1f}, TTA=({config[2]},{config[3]},{config[4]},{config[5]})")
result = run_evaluation(config, args)
results.append(result)
if result['per'] < best_per:
best_per = result['per']
print(f"🎯 新最佳PER: {best_per:.3f}%")
else:
print(f" PER: {result['per']:.3f}%")
# 保存粗搜索结果
coarse_results = {
'results': results,
'stage': 'coarse',
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S"),
'args': vars(args)
}
with open(args.coarse_results, 'w') as f:
json.dump(coarse_results, f, indent=2)
# 选择最佳配置
valid_results = [r for r in results if r['per'] != float('inf')]
best_configs = sorted(valid_results, key=lambda x: x['per'])[:args.top_k]
print(f"\n粗搜索完成!选择前{args.top_k}个配置进行精细搜索:")
for i, config in enumerate(best_configs):
print(f"{i+1}. PER={config['per']:.3f}% | GRU={config['gru_weight']:.1f} | {config['tta_weights']}")
return best_configs
def run_fine_search(best_configs, args):
"""运行精细搜索"""
print(f"\n🔬 第二阶段:精细搜索")
print("=" * 50)
fine_search_space = generate_fine_search_space(best_configs, args)
total_configs = len(fine_search_space)
print(f"精细搜索空间: {total_configs} 个配置")
print(f"搜索范围: ±{args.fine_range}")
print(f"搜索步长: {args.fine_step}")
print()
results = []
best_per = float('inf')
for i, config in enumerate(fine_search_space):
print(f"进度: {i+1}/{total_configs} ({100*(i+1)/total_configs:.1f}%)")
result = run_evaluation(config, args)
results.append(result)
if result['per'] < best_per:
best_per = result['per']
print(f"🎯 新最佳PER: {best_per:.3f}%")
print(f" 配置: GRU={result['gru_weight']:.1f} | {result['tta_weights']}")
if i % 10 == 0: # 每10个配置显示一次进度
print(f" 当前PER: {result['per']:.3f}%")
return results
def main():
args = parse_arguments()
print("🚀 分阶段TTA-E参数搜索")
print("=" * 60)
if args.stage in ['coarse', 'both']:
# 运行粗搜索
best_configs = run_coarse_search(args)
if args.stage == 'coarse':
print(f"\n✅ 粗搜索完成,结果保存到: {args.coarse_results}")
return
else:
# 从文件加载粗搜索结果
print(f"📁 加载粗搜索结果: {args.coarse_results}")
with open(args.coarse_results, 'r') as f:
coarse_data = json.load(f)
valid_results = [r for r in coarse_data['results'] if r['per'] != float('inf')]
best_configs = sorted(valid_results, key=lambda x: x['per'])[:args.top_k]
if args.stage in ['fine', 'both']:
# 运行精细搜索
fine_results = run_fine_search(best_configs, args)
# 合并所有结果
all_results = fine_results
if args.stage == 'both':
all_results.extend([r for r in coarse_data['results'] if 'results' in locals()])
# 找到最终最佳配置
valid_results = [r for r in all_results if r['per'] != float('inf')]
final_best = min(valid_results, key=lambda x: x['per'])
# 保存最终结果
final_results = {
'best_config': final_best,
'all_fine_results': fine_results,
'stage': args.stage,
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S"),
'args': vars(args)
}
with open(args.final_results, 'w') as f:
json.dump(final_results, f, indent=2)
print(f"\n🏆 最终最佳配置:")
print(f"PER: {final_best['per']:.3f}%")
print(f"GRU权重: {final_best['gru_weight']:.1f}")
print(f"TTA权重: {final_best['tta_weights']}")
print(f"结果保存到: {args.final_results}")
# 显示top-10
sorted_results = sorted(valid_results, key=lambda x: x['per'])[:10]
print(f"\n📊 Top-10配置:")
for i, result in enumerate(sorted_results):
tw = result['tta_weights']
print(f"{i+1:2d}. PER={result['per']:6.3f}% | GRU={result['gru_weight']:.1f} | "
f"TTA=({tw['noise']:.1f},{tw['scale']:.1f},{tw['shift']:.1f},{tw['smooth']:.1f})")
if __name__ == "__main__":
main()