287 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			287 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # Copyright 2021 Mobvoi Inc. All Rights Reserved. | ||
|  | # Author: di.wu@mobvoi.com (DI WU) | ||
|  | #  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0) | ||
|  | """Decoder definition.""" | ||
|  | from typing import Tuple, List, Optional | ||
|  | 
 | ||
|  | import torch | ||
|  | from typeguard import check_argument_types | ||
|  | 
 | ||
|  | from wenet.transformer.attention import MultiHeadedAttention | ||
|  | from wenet.transformer.decoder_layer import DecoderLayer | ||
|  | from wenet.transformer.embedding import PositionalEncoding | ||
|  | from wenet.transformer.positionwise_feed_forward import PositionwiseFeedForward | ||
|  | from wenet.utils.mask import (subsequent_mask, make_pad_mask) | ||
|  | 
 | ||
|  | 
 | ||
|  | class TransformerDecoder(torch.nn.Module): | ||
|  |     """Base class of Transfomer decoder module.
 | ||
|  |     Args: | ||
|  |         vocab_size: output dim | ||
|  |         encoder_output_size: dimension of attention | ||
|  |         attention_heads: the number of heads of multi head attention | ||
|  |         linear_units: the hidden units number of position-wise feedforward | ||
|  |         num_blocks: the number of decoder blocks | ||
|  |         dropout_rate: dropout rate | ||
|  |         self_attention_dropout_rate: dropout rate for attention | ||
|  |         input_layer: input layer type | ||
|  |         use_output_layer: whether to use output layer | ||
|  |         pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | ||
|  |         normalize_before: | ||
|  |             True: use layer_norm before each sub-block of a layer. | ||
|  |             False: use layer_norm after each sub-block of a layer. | ||
|  |         concat_after: whether to concat attention layer's input and output | ||
|  |             True: x -> x + linear(concat(x, att(x))) | ||
|  |             False: x -> x + att(x) | ||
|  |     """
 | ||
|  |     def __init__( | ||
|  |         self, | ||
|  |         vocab_size: int, | ||
|  |         encoder_output_size: int, | ||
|  |         attention_heads: int = 4, | ||
|  |         linear_units: int = 2048, | ||
|  |         num_blocks: int = 6, | ||
|  |         dropout_rate: float = 0.1, | ||
|  |         positional_dropout_rate: float = 0.1, | ||
|  |         self_attention_dropout_rate: float = 0.0, | ||
|  |         src_attention_dropout_rate: float = 0.0, | ||
|  |         input_layer: str = "embed", | ||
|  |         use_output_layer: bool = True, | ||
|  |         normalize_before: bool = True, | ||
|  |         concat_after: bool = False, | ||
|  |     ): | ||
|  |         assert check_argument_types() | ||
|  |         super().__init__() | ||
|  |         attention_dim = encoder_output_size | ||
|  | 
 | ||
|  |         if input_layer == "embed": | ||
|  |             self.embed = torch.nn.Sequential( | ||
|  |                 torch.nn.Embedding(vocab_size, attention_dim), | ||
|  |                 PositionalEncoding(attention_dim, positional_dropout_rate), | ||
|  |             ) | ||
|  |         else: | ||
|  |             raise ValueError(f"only 'embed' is supported: {input_layer}") | ||
|  | 
 | ||
|  |         self.normalize_before = normalize_before | ||
|  |         self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-12) | ||
|  |         self.use_output_layer = use_output_layer | ||
|  |         self.output_layer = torch.nn.Linear(attention_dim, vocab_size) | ||
|  |         self.num_blocks = num_blocks | ||
|  |         self.decoders = torch.nn.ModuleList([ | ||
|  |             DecoderLayer( | ||
|  |                 attention_dim, | ||
|  |                 MultiHeadedAttention(attention_heads, attention_dim, | ||
|  |                                      self_attention_dropout_rate), | ||
|  |                 MultiHeadedAttention(attention_heads, attention_dim, | ||
|  |                                      src_attention_dropout_rate), | ||
|  |                 PositionwiseFeedForward(attention_dim, linear_units, | ||
|  |                                         dropout_rate), | ||
|  |                 dropout_rate, | ||
|  |                 normalize_before, | ||
|  |                 concat_after, | ||
|  |             ) for _ in range(self.num_blocks) | ||
|  |         ]) | ||
|  | 
 | ||
|  |     def forward( | ||
|  |         self, | ||
|  |         memory: torch.Tensor, | ||
|  |         memory_mask: torch.Tensor, | ||
|  |         ys_in_pad: torch.Tensor, | ||
|  |         ys_in_lens: torch.Tensor, | ||
|  |         r_ys_in_pad: Optional[torch.Tensor] = None, | ||
|  |         reverse_weight: float = 0.0, | ||
|  |     ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | ||
|  |         """Forward decoder.
 | ||
|  |         Args: | ||
|  |             memory: encoded memory, float32  (batch, maxlen_in, feat) | ||
|  |             memory_mask: encoder memory mask, (batch, 1, maxlen_in) | ||
|  |             ys_in_pad: padded input token ids, int64 (batch, maxlen_out) | ||
|  |             ys_in_lens: input lengths of this batch (batch) | ||
|  |             r_ys_in_pad: not used in transformer decoder, in order to unify api | ||
|  |                 with bidirectional decoder | ||
|  |             reverse_weight: not used in transformer decoder, in order to unify | ||
|  |                 api with bidirectional decode | ||
|  |         Returns: | ||
|  |             (tuple): tuple containing: | ||
|  |                 x: decoded token score before softmax (batch, maxlen_out, | ||
|  |                     vocab_size) if use_output_layer is True, | ||
|  |                 torch.tensor(0.0), in order to unify api with bidirectional decoder | ||
|  |                 olens: (batch, ) | ||
|  |         """
 | ||
|  |         tgt = ys_in_pad | ||
|  | 
 | ||
|  |         # tgt_mask: (B, 1, L) | ||
|  |         tgt_mask = (~make_pad_mask(ys_in_lens).unsqueeze(1)).to(tgt.device) | ||
|  |         # m: (1, L, L) | ||
|  |         m = subsequent_mask(tgt_mask.size(-1), | ||
|  |                             device=tgt_mask.device).unsqueeze(0) | ||
|  |         # tgt_mask: (B, L, L) | ||
|  |         tgt_mask = tgt_mask & m | ||
|  |         x, _ = self.embed(tgt) | ||
|  |         for layer in self.decoders: | ||
|  |             x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory, | ||
|  |                                                      memory_mask) | ||
|  |         if self.normalize_before: | ||
|  |             x = self.after_norm(x) | ||
|  |         if self.use_output_layer: | ||
|  |             x = self.output_layer(x) | ||
|  |         olens = tgt_mask.sum(1) | ||
|  |         return x, torch.tensor(0.0), olens | ||
|  | 
 | ||
|  |     def forward_one_step( | ||
|  |         self, | ||
|  |         memory: torch.Tensor, | ||
|  |         memory_mask: torch.Tensor, | ||
|  |         tgt: torch.Tensor, | ||
|  |         tgt_mask: torch.Tensor, | ||
|  |         cache: Optional[List[torch.Tensor]] = None, | ||
|  |     ) -> Tuple[torch.Tensor, List[torch.Tensor]]: | ||
|  |         """Forward one step.
 | ||
|  |             This is only used for decoding. | ||
|  |         Args: | ||
|  |             memory: encoded memory, float32  (batch, maxlen_in, feat) | ||
|  |             memory_mask: encoded memory mask, (batch, 1, maxlen_in) | ||
|  |             tgt: input token ids, int64 (batch, maxlen_out) | ||
|  |             tgt_mask: input token mask,  (batch, maxlen_out) | ||
|  |                       dtype=torch.uint8 in PyTorch 1.2- | ||
|  |                       dtype=torch.bool in PyTorch 1.2+ (include 1.2) | ||
|  |             cache: cached output list of (batch, max_time_out-1, size) | ||
|  |         Returns: | ||
|  |             y, cache: NN output value and cache per `self.decoders`. | ||
|  |             y.shape` is (batch, maxlen_out, token) | ||
|  |         """
 | ||
|  |         x, _ = self.embed(tgt) | ||
|  |         new_cache = [] | ||
|  |         for i, decoder in enumerate(self.decoders): | ||
|  |             if cache is None: | ||
|  |                 c = None | ||
|  |             else: | ||
|  |                 c = cache[i] | ||
|  |             x, tgt_mask, memory, memory_mask = decoder(x, | ||
|  |                                                        tgt_mask, | ||
|  |                                                        memory, | ||
|  |                                                        memory_mask, | ||
|  |                                                        cache=c) | ||
|  |             new_cache.append(x) | ||
|  |         if self.normalize_before: | ||
|  |             y = self.after_norm(x[:, -1]) | ||
|  |         else: | ||
|  |             y = x[:, -1] | ||
|  |         if self.use_output_layer: | ||
|  |             y = torch.log_softmax(self.output_layer(y), dim=-1) | ||
|  |         return y, new_cache | ||
|  | 
 | ||
|  | 
 | ||
|  | class BiTransformerDecoder(torch.nn.Module): | ||
|  |     """Base class of Transfomer decoder module.
 | ||
|  |     Args: | ||
|  |         vocab_size: output dim | ||
|  |         encoder_output_size: dimension of attention | ||
|  |         attention_heads: the number of heads of multi head attention | ||
|  |         linear_units: the hidden units number of position-wise feedforward | ||
|  |         num_blocks: the number of decoder blocks | ||
|  |         r_num_blocks: the number of right to left decoder blocks | ||
|  |         dropout_rate: dropout rate | ||
|  |         self_attention_dropout_rate: dropout rate for attention | ||
|  |         input_layer: input layer type | ||
|  |         use_output_layer: whether to use output layer | ||
|  |         pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | ||
|  |         normalize_before: | ||
|  |             True: use layer_norm before each sub-block of a layer. | ||
|  |             False: use layer_norm after each sub-block of a layer. | ||
|  |         concat_after: whether to concat attention layer's input and output | ||
|  |             True: x -> x + linear(concat(x, att(x))) | ||
|  |             False: x -> x + att(x) | ||
|  |     """
 | ||
|  |     def __init__( | ||
|  |         self, | ||
|  |         vocab_size: int, | ||
|  |         encoder_output_size: int, | ||
|  |         attention_heads: int = 4, | ||
|  |         linear_units: int = 2048, | ||
|  |         num_blocks: int = 6, | ||
|  |         r_num_blocks: int = 0, | ||
|  |         dropout_rate: float = 0.1, | ||
|  |         positional_dropout_rate: float = 0.1, | ||
|  |         self_attention_dropout_rate: float = 0.0, | ||
|  |         src_attention_dropout_rate: float = 0.0, | ||
|  |         input_layer: str = "embed", | ||
|  |         use_output_layer: bool = True, | ||
|  |         normalize_before: bool = True, | ||
|  |         concat_after: bool = False, | ||
|  |     ): | ||
|  | 
 | ||
|  |         assert check_argument_types() | ||
|  |         super().__init__() | ||
|  |         self.left_decoder = TransformerDecoder( | ||
|  |             vocab_size, encoder_output_size, attention_heads, linear_units, | ||
|  |             num_blocks, dropout_rate, positional_dropout_rate, | ||
|  |             self_attention_dropout_rate, src_attention_dropout_rate, | ||
|  |             input_layer, use_output_layer, normalize_before, concat_after) | ||
|  | 
 | ||
|  |         self.right_decoder = TransformerDecoder( | ||
|  |             vocab_size, encoder_output_size, attention_heads, linear_units, | ||
|  |             r_num_blocks, dropout_rate, positional_dropout_rate, | ||
|  |             self_attention_dropout_rate, src_attention_dropout_rate, | ||
|  |             input_layer, use_output_layer, normalize_before, concat_after) | ||
|  | 
 | ||
|  |     def forward( | ||
|  |         self, | ||
|  |         memory: torch.Tensor, | ||
|  |         memory_mask: torch.Tensor, | ||
|  |         ys_in_pad: torch.Tensor, | ||
|  |         ys_in_lens: torch.Tensor, | ||
|  |         r_ys_in_pad: torch.Tensor, | ||
|  |         reverse_weight: float = 0.0, | ||
|  |     ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | ||
|  |         """Forward decoder.
 | ||
|  |         Args: | ||
|  |             memory: encoded memory, float32  (batch, maxlen_in, feat) | ||
|  |             memory_mask: encoder memory mask, (batch, 1, maxlen_in) | ||
|  |             ys_in_pad: padded input token ids, int64 (batch, maxlen_out) | ||
|  |             ys_in_lens: input lengths of this batch (batch) | ||
|  |             r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out), | ||
|  |                 used for right to left decoder | ||
|  |             reverse_weight: used for right to left decoder | ||
|  |         Returns: | ||
|  |             (tuple): tuple containing: | ||
|  |                 x: decoded token score before softmax (batch, maxlen_out, | ||
|  |                     vocab_size) if use_output_layer is True, | ||
|  |                 r_x: x: decoded token score (right to left decoder) | ||
|  |                     before softmax (batch, maxlen_out, vocab_size) | ||
|  |                     if use_output_layer is True, | ||
|  |                 olens: (batch, ) | ||
|  |         """
 | ||
|  |         l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad, | ||
|  |                                           ys_in_lens) | ||
|  |         r_x = torch.tensor(0.0) | ||
|  |         if reverse_weight > 0.0: | ||
|  |             r_x, _, olens = self.right_decoder(memory, memory_mask, r_ys_in_pad, | ||
|  |                                                ys_in_lens) | ||
|  |         return l_x, r_x, olens | ||
|  | 
 | ||
|  |     def forward_one_step( | ||
|  |         self, | ||
|  |         memory: torch.Tensor, | ||
|  |         memory_mask: torch.Tensor, | ||
|  |         tgt: torch.Tensor, | ||
|  |         tgt_mask: torch.Tensor, | ||
|  |         cache: Optional[List[torch.Tensor]] = None, | ||
|  |     ) -> Tuple[torch.Tensor, List[torch.Tensor]]: | ||
|  |         """Forward one step.
 | ||
|  |             This is only used for decoding. | ||
|  |         Args: | ||
|  |             memory: encoded memory, float32  (batch, maxlen_in, feat) | ||
|  |             memory_mask: encoded memory mask, (batch, 1, maxlen_in) | ||
|  |             tgt: input token ids, int64 (batch, maxlen_out) | ||
|  |             tgt_mask: input token mask,  (batch, maxlen_out) | ||
|  |                       dtype=torch.uint8 in PyTorch 1.2- | ||
|  |                       dtype=torch.bool in PyTorch 1.2+ (include 1.2) | ||
|  |             cache: cached output list of (batch, max_time_out-1, size) | ||
|  |         Returns: | ||
|  |             y, cache: NN output value and cache per `self.decoders`. | ||
|  |             y.shape` is (batch, maxlen_out, token) | ||
|  |         """
 | ||
|  |         return self.left_decoder.forward_one_step(memory, memory_mask, tgt, | ||
|  |                                                   tgt_mask, cache) |