Files
b2txt25/model_training_nnn_tpu/test_data_loading.py

254 lines
8.4 KiB
Python
Raw Normal View History

2025-10-16 17:14:06 +08:00
#!/usr/bin/env python3
"""
测试优化后的数据加载管道性能
Test script for optimized data loading pipeline performance
"""
import os
import time
import psutil
import tensorflow as tf
from omegaconf import OmegaConf
from dataset_tf import BrainToTextDatasetTF, train_test_split_indices, create_input_fn
def get_memory_usage():
"""获取当前内存使用情况"""
process = psutil.Process()
memory_info = process.memory_info()
return memory_info.rss / 1024 / 1024 # MB
def test_data_loading_performance():
"""测试数据加载性能对比"""
# 加载配置
config_path = "../rnn_args.yaml"
if not os.path.exists(config_path):
print("❌ Configuration file not found. Creating minimal test config...")
# 创建最小测试配置
args = {
'dataset': {
'dataset_dir': '../data/hdf5_data_final',
'sessions': ['t15.2022.03.14', 't15.2022.03.16'],
'batch_size': 32,
'days_per_batch': 1,
'seed': 42,
'data_transforms': {
'smooth_data': False,
'white_noise_std': 0.0,
'constant_offset_std': 0.0,
'random_walk_std': 0.0,
'static_gain_std': 0.0,
'random_cut': 0
}
},
'num_training_batches': 10 # 只测试10个batch
}
else:
args = OmegaConf.load(config_path)
args = OmegaConf.to_container(args, resolve=True)
# 限制测试batch数量
args['num_training_batches'] = 10
print("🔍 Starting data loading performance test...")
print(f"📊 Test configuration: {args['num_training_batches']} batches, batch_size={args['dataset']['batch_size']}")
# 获取文件路径
train_file_paths = [
os.path.join(args["dataset"]["dataset_dir"], s, 'data_train.hdf5')
for s in args['dataset']['sessions']
]
print(f"📁 Testing with files: {train_file_paths}")
# 检查文件是否存在
missing_files = [f for f in train_file_paths if not os.path.exists(f)]
if missing_files:
print(f"❌ Missing files: {missing_files}")
print("⚠️ Creating dummy test data...")
return test_with_dummy_data(args)
# 分割数据
print("🔄 Splitting data...")
train_trials, _ = train_test_split_indices(
file_paths=train_file_paths,
test_percentage=0,
seed=args['dataset']['seed']
)
print(f"📈 Found {sum(len(trials['trials']) for trials in train_trials.values())} training trials")
# 测试1: 不使用缓存
print("\n" + "="*60)
print("🐌 TEST 1: 标准数据加载 (无缓存)")
print("="*60)
initial_memory = get_memory_usage()
start_time = time.time()
dataset_no_cache = BrainToTextDatasetTF(
trial_indices=train_trials,
n_batches=args['num_training_batches'],
split='train',
batch_size=args['dataset']['batch_size'],
days_per_batch=args['dataset']['days_per_batch'],
random_seed=args['dataset']['seed'],
cache_data=False, # 禁用缓存
preload_all_data=False # 禁用预加载
)
tf_dataset_no_cache = create_input_fn(
dataset_no_cache,
args['dataset']['data_transforms'],
training=True
)
# 测试前3个batch的加载时间
batch_times = []
for i, batch in enumerate(tf_dataset_no_cache.take(3)):
batch_start = time.time()
# 触发实际数据加载
_ = batch['input_features'].numpy()
batch_time = time.time() - batch_start
batch_times.append(batch_time)
print(f" Batch {i}: {batch_time:.3f}s")
no_cache_time = time.time() - start_time
no_cache_memory = get_memory_usage() - initial_memory
print(f"💾 Memory usage: +{no_cache_memory:.1f} MB")
print(f"⏱️ Total time: {no_cache_time:.3f}s")
print(f"📊 Avg batch time: {sum(batch_times)/len(batch_times):.3f}s")
# 测试2: 使用预加载缓存
print("\n" + "="*60)
print("🚀 TEST 2: 优化数据加载 (全缓存预加载)")
print("="*60)
initial_memory = get_memory_usage()
start_time = time.time()
dataset_with_cache = BrainToTextDatasetTF(
trial_indices=train_trials,
n_batches=args['num_training_batches'],
split='train',
batch_size=args['dataset']['batch_size'],
days_per_batch=args['dataset']['days_per_batch'],
random_seed=args['dataset']['seed'],
cache_data=True, # 启用缓存
preload_all_data=True # 启用预加载
)
preload_time = time.time() - start_time
preload_memory = get_memory_usage() - initial_memory
print(f"📝 Preloading completed in {preload_time:.3f}s")
print(f"💾 Preloading memory: +{preload_memory:.1f} MB")
tf_dataset_with_cache = create_input_fn(
dataset_with_cache,
args['dataset']['data_transforms'],
training=True
)
# 测试前3个batch的加载时间
batch_start_time = time.time()
batch_times_cached = []
for i, batch in enumerate(tf_dataset_with_cache.take(3)):
batch_start = time.time()
# 触发实际数据加载
_ = batch['input_features'].numpy()
batch_time = time.time() - batch_start
batch_times_cached.append(batch_time)
print(f" Batch {i}: {batch_time:.3f}s")
cached_batch_time = time.time() - batch_start_time
cached_memory = get_memory_usage() - initial_memory
print(f"💾 Total memory usage: +{cached_memory:.1f} MB")
print(f"⏱️ Batch loading time: {cached_batch_time:.3f}s")
print(f"📊 Avg batch time: {sum(batch_times_cached)/len(batch_times_cached):.3f}s")
# 性能对比
print("\n" + "="*60)
print("📈 PERFORMANCE COMPARISON")
print("="*60)
speedup = (sum(batch_times)/len(batch_times)) / (sum(batch_times_cached)/len(batch_times_cached))
memory_cost = cached_memory - no_cache_memory
print(f"🚀 Speed improvement: {speedup:.1f}x faster")
print(f"💾 Memory cost: +{memory_cost:.1f} MB for caching")
print(f"⚡ First batch time: {batch_times[0]:.3f}s → {batch_times_cached[0]:.3f}s")
if speedup > 2:
print("✅ Excellent! 缓存优化显著提升了数据加载速度")
elif speedup > 1.5:
print("✅ Good! 缓存优化有效提升了数据加载速度")
else:
print("⚠️ Warning: 缓存优化效果不明显,可能数据量太小")
return True
def test_with_dummy_data(args):
"""使用模拟数据进行测试"""
print("🔧 Creating dummy data for testing...")
# 创建模拟试验索引
dummy_trials = {
0: {
'trials': list(range(100)), # 100个模拟试验
'session_path': 'dummy_path'
}
}
print("📊 Testing with dummy data (100 trials)...")
# 测试缓存vs非缓存的初始化时间差异
print("\n🐌 Testing without cache...")
start_time = time.time()
dataset_no_cache = BrainToTextDatasetTF(
trial_indices=dummy_trials,
n_batches=5,
split='train',
batch_size=32,
days_per_batch=1,
random_seed=42,
cache_data=False,
preload_all_data=False
)
no_cache_time = time.time() - start_time
print(f" Initialization time: {no_cache_time:.3f}s")
print("\n🚀 Testing with cache...")
start_time = time.time()
dataset_with_cache = BrainToTextDatasetTF(
trial_indices=dummy_trials,
n_batches=5,
split='train',
batch_size=32,
days_per_batch=1,
random_seed=42,
cache_data=True,
preload_all_data=True
)
cache_time = time.time() - start_time
print(f" Initialization time: {cache_time:.3f}s")
print(f"\n✅ 缓存机制已成功集成到数据加载管道中")
print(f"📝 实际性能需要用真实的HDF5数据进行测试")
return True
if __name__ == "__main__":
print("🧪 Data Loading Performance Test")
print("="*60)
try:
success = test_data_loading_performance()
if success:
print("\n🎉 Data loading optimization test completed successfully!")
print("💡 你现在可以运行 train_model_tf.py 来享受快速的数据加载了")
except Exception as e:
print(f"\n❌ Test failed with error: {e}")
import traceback
traceback.print_exc()