Files
b2txt25/model_training_nnn_tpu/amp_tpu_training.py

315 lines
8.6 KiB
Python
Raw Normal View History

2025-10-15 16:55:52 +08:00
#!/usr/bin/env python3
"""
使用AMP的TPU训练脚本
正确处理混合精度训练避免dtype不匹配问题
"""
import os
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 设置AMP相关的环境变量
os.environ['XLA_FLAGS'] = (
'--xla_cpu_multi_thread_eigen=true '
'--xla_cpu_enable_fast_math=true'
)
os.environ['XLA_USE_BF16'] = '1' # 启用bf16
import torch_xla.core.xla_model as xm
import torch_xla.distributed.parallel_loader as pl
import torch_xla.amp as xla_amp
class AMPModel(nn.Module):
"""支持AMP的简单模型"""
def __init__(self, input_size=784, hidden_size=512, num_classes=10):
super(AMPModel, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(inplace=True),
nn.Dropout(0.2),
nn.Linear(hidden_size, hidden_size // 2),
nn.ReLU(inplace=True),
nn.Dropout(0.2),
nn.Linear(hidden_size // 2, num_classes)
)
def forward(self, x):
# 展平输入
x = x.view(x.size(0), -1)
return self.network(x)
class AMPTrainer:
"""AMP训练器"""
def __init__(self, model, device, learning_rate=0.001):
self.model = model
self.device = device
self.optimizer = optim.Adam(model.parameters(), lr=learning_rate)
self.criterion = nn.CrossEntropyLoss()
# 初始化AMP scaler
self.scaler = xla_amp.GradScaler()
print(f"✅ AMP训练器初始化完成")
print(f" 设备: {device}")
print(f" 模型参数: {sum(p.numel() for p in model.parameters()):,}")
def train_step(self, data, target):
"""单个AMP训练步骤"""
self.model.train()
self.optimizer.zero_grad()
# 使用autocast进行混合精度前向传播
with xla_amp.autocast():
output = self.model(data)
loss = self.criterion(output, target)
# 使用scaler进行反向传播
self.scaler.scale(loss).backward()
# 梯度裁剪(可选)
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
# 更新参数
self.scaler.step(self.optimizer)
self.scaler.update()
# 计算准确率
pred = output.argmax(dim=1)
correct = pred.eq(target).sum().item()
accuracy = correct / target.size(0)
return loss.item(), accuracy
def evaluate_step(self, data, target):
"""单个评估步骤"""
self.model.eval()
with torch.no_grad():
with xla_amp.autocast():
output = self.model(data)
loss = self.criterion(output, target)
pred = output.argmax(dim=1)
correct = pred.eq(target).sum().item()
accuracy = correct / target.size(0)
return loss.item(), accuracy
def get_mnist_loaders(batch_size=64):
"""获取MNIST数据加载器"""
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = torchvision.datasets.MNIST(
root='./mnist_data',
train=True,
download=True,
transform=transform
)
test_dataset = torchvision.datasets.MNIST(
root='./mnist_data',
train=False,
download=True,
transform=transform
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=0
)
return train_loader, test_loader
def train_with_amp():
"""使用AMP进行训练"""
print("🚀 开始AMP TPU训练...")
# 获取设备
device = xm.xla_device()
print(f"📱 设备: {device}")
# 创建模型
model = AMPModel(input_size=784, hidden_size=512, num_classes=10).to(device)
# 创建训练器
trainer = AMPTrainer(model, device, learning_rate=0.001)
# 获取数据
print("📥 加载MNIST数据...")
train_loader, test_loader = get_mnist_loaders(batch_size=64)
# 使用XLA并行加载器
train_device_loader = pl.MpDeviceLoader(train_loader, device)
test_device_loader = pl.MpDeviceLoader(test_loader, device)
print("🎯 开始AMP训练...")
# 训练循环
num_epochs = 2
train_losses = []
train_accuracies = []
for epoch in range(num_epochs):
print(f"\n📊 Epoch {epoch + 1}/{num_epochs}")
epoch_start = time.time()
epoch_loss = 0.0
epoch_acc = 0.0
num_batches = 0
max_batches_per_epoch = 200 # 限制每个epoch的批次数
for batch_idx, (data, target) in enumerate(train_device_loader):
if batch_idx >= max_batches_per_epoch:
break
# 训练步骤
loss, accuracy = trainer.train_step(data, target)
epoch_loss += loss
epoch_acc += accuracy
num_batches += 1
# 每20个批次同步一次
if batch_idx % 20 == 0:
xm.mark_step()
avg_loss = epoch_loss / num_batches
avg_acc = epoch_acc / num_batches * 100
print(f" 批次 {batch_idx:3d}/{max_batches_per_epoch} | "
f"损失: {avg_loss:.4f} | "
f"准确率: {avg_acc:.2f}%")
# Epoch结束同步
xm.mark_step()
xm.wait_device_ops()
epoch_time = time.time() - epoch_start
final_loss = epoch_loss / num_batches
final_acc = epoch_acc / num_batches * 100
train_losses.append(final_loss)
train_accuracies.append(final_acc)
print(f"✅ Epoch {epoch + 1} 完成 | "
f"耗时: {epoch_time:.2f}s | "
f"平均损失: {final_loss:.4f} | "
f"平均准确率: {final_acc:.2f}%")
return trainer, train_losses, train_accuracies
def test_with_amp(trainer):
"""使用AMP进行测试"""
print("\n🧪 开始AMP测试...")
device = xm.xla_device()
_, test_loader = get_mnist_loaders(batch_size=64)
test_device_loader = pl.MpDeviceLoader(test_loader, device)
total_loss = 0.0
total_acc = 0.0
num_batches = 0
max_test_batches = 100
start_time = time.time()
for batch_idx, (data, target) in enumerate(test_device_loader):
if batch_idx >= max_test_batches:
break
loss, accuracy = trainer.evaluate_step(data, target)
total_loss += loss
total_acc += accuracy
num_batches += 1
if batch_idx % 20 == 0:
xm.mark_step()
xm.mark_step()
xm.wait_device_ops()
test_time = time.time() - start_time
avg_loss = total_loss / num_batches
avg_acc = total_acc / num_batches * 100
print(f"✅ 测试完成!")
print(f"⏱️ 测试时间: {test_time:.2f}")
print(f"🎯 测试损失: {avg_loss:.4f}")
print(f"🎯 测试准确率: {avg_acc:.2f}%")
return avg_loss, avg_acc
def main():
"""主函数"""
print("=" * 60)
print("⚡ AMP TPU训练示例")
print("=" * 60)
try:
# 训练
trainer, train_losses, train_accuracies = train_with_amp()
# 测试
test_loss, test_acc = test_with_amp(trainer)
# 保存模型
print("\n💾 保存模型...")
model_cpu = trainer.model.cpu()
torch.save({
'model_state_dict': model_cpu.state_dict(),
'train_losses': train_losses,
'train_accuracies': train_accuracies,
'test_loss': test_loss,
'test_accuracy': test_acc
}, 'amp_mnist_model.pth')
print("✅ 模型已保存到 amp_mnist_model.pth")
print("\n🎉 AMP训练完成!")
print(f"📊 最终训练准确率: {train_accuracies[-1]:.2f}%")
print(f"📊 测试准确率: {test_acc:.2f}%")
if train_accuracies[-1] > 85 and test_acc > 80:
print("✅ AMP训练成功! 模型性能优秀")
else:
print("⚠️ 模型性能一般但AMP功能正常")
except Exception as e:
print(f"❌ AMP训练失败: {e}")
import traceback
traceback.print_exc()
print("\n💡 故障排除建议:")
print(" 1. 确保PyTorch XLA版本支持AMP")
print(" 2. 检查TPU资源是否充足")
print(" 3. 尝试减小batch_size")
if __name__ == "__main__":
main()